Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 11

Strang Page 107 no: 11

- a) $W = \{ c \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mid c, d \in R \}.$
- b) $W = \{ c \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \mid c \in R \}.$
- c) $W = \{ c \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mid c, d \in R \} = \{ c \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mid c, d \in R \},$ which is the set of all diagonal matrices.

Strang Page 107 no: 14

- a) The subspaces of R^2 are R^2 itself, lines $\vec{n} \bullet \vec{x} = 0$; and $\{(0,0)\}$.
- b) The subspaces of R^4 are R^4 itself, three dimensional "planes" through the origin $\vec{n} \cdot \vec{x} = 0$; two dimensional planes through the origin $\vec{n_1} \cdot \vec{x} = 0$ and $\vec{n_2} \cdot \vec{x} = 0$; one dimensional "planes" (lines) through the origin $\vec{n_1} \cdot \vec{x} = 0$, $\vec{n_2} \cdot \vec{x} = 0$ and $\vec{n_3} \cdot \vec{x} = 0$, and finally $Z = \{(0,0,0,0)\}$. Observe that the three, two and one dimensional planes can alternatively be described parametrically by $\{c \vec{v_1} + d \vec{v_2} + e \vec{v_3} \mid c, d, e \in R\}$, $\{c \vec{v_1} + d \vec{v_2} \mid c, d \in R\}$, and $\{c \vec{v} \mid c \in R\}$;

Strang Page 107 no: 17

a) The set of invertible, 2 by 2, matrices is, for instance, not closed under scalar multiplication $0\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1\end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0\end{bmatrix}$. (it is not closed under vector addition either, can you give an example?) A even quicker argument is this: "the set does not contain the zero matrix, therefore it

A even quicker argument is this: "the set does not contain the zero matrix, therefore it cannot be a vectorspace", and, of course, every subspace of a vectorspace is a vectorspace.

b) The set of singular, 2 by 2 matrices is closed under scalar multiplication, but not closed under vector addition $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$.

Strang Page 107 no: 20

- a) There is a solution only if \vec{b} is in the column space of $A \Rightarrow b_2 = 2b_1, b_3 = -b_1$.
- b) There is a solution only if \vec{b} is in the column space of $A \Rightarrow b_3 = -b_1$.

Strang Page 107 no:23

... unless \vec{b} is a linear combination of the columns of A, that means unless \vec{b} is in the column 1 0 0 space of A. An example where the column space gets larger is given by $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 0 \end{bmatrix}$. 0 0 1 1 0 1 An example where the column space does not get larger is given by $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \end{bmatrix}$.

An example where the column space does not get farger is given by $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. $0 \quad 0 \qquad 0$

The system $A \vec{x} = \vec{b}$ is solvable if and only if \vec{b} is in the columnspace of A, and that happens exactly when the column spaces are the same for A and $[A \vec{b}]$.