Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 14

Strang Page 136 no: 1

The complete solution is given as $\vec{x} = \vec{x}_p + \alpha \vec{s}$.

Strang Page 136 no: 4

a) Unfortunately our version of MATLAB does not handle symbolics. The easiest way to solve this problem is to find a matrix E with the property that EA = R, where R denotes the reduced row echelon form of A. Clearly the first two columns of E^{-1} are the pivot columns of A. we augment them to find a basis for R^4 .

Ah=[A, eye(4)]

RAh=rref([A, eye(4)])

format rat Einv=Ah(:, 1:4), E=inv(Einv)

Observe that EA = R

E*A, R

this means that the desired equations can be read from the third and fourth rows of E:

$$b_1 - b_3 + \frac{1}{3}b_4 = 0 \Rightarrow 3b_1 - 3b_3 + b_4 = 0 \text{ and } b_2 - 2b_3 + \frac{2}{3}b_4 = 0 \Rightarrow 3b_2 - 6b_3 + 2b_4 = 0.$$

The solutions for \vec{x} in that case are $\vec{x} = \begin{bmatrix} 3 b_3 - \frac{5}{3} b_4 \\ -b_3 + \frac{2}{3} b_4 \end{bmatrix}$ Observe there is just one solution (no free

variables, A has full column rank, the nullspace of A consists of the zero vector).

b) The solution is analogous to that of a).

format short

```
A=[1 2 3; 2 4 6; 2 5 7; 3 9 12], R=rref(A)
```

format short
Ah=[A(:, 1:2), eye(4)]

RAh=rref([Ah, eye(4)])

```
RAh =
 Columns 1 through 7
                                0
   1.0000
                        0
                                    3.0000
                                             -1.6667
          0
                    0
       0
            1.0000
                                0
                                    -1.0000
                                              0.6667
                                                           0
                                0
            0
       0
                    1.0000
                                    -1.0000
                                              0.3333
                                                       1.0000
                             1.0000
       0
                0
                     0
                                     -2.0000
                                              0.6667
                                                           0
 Columns 8 through 10
       0
                  -1.6667
          3.0000
       0
          -1.0000
                    0.6667
       0
          -1.0000
                    0.3333
   1.0000 -2.0000
                    0.6667
```

```
format rat
Einv=Ah(:, 1:4), E=inv(Einv)
```

this means that the desired equations can again be read from the third and fourth rows of E: $b_1 - b_3 + \frac{1}{3}b_4 = 0$ and $b_2 - 2b_3 + \frac{2}{3}b_4 = 0$. The solutions for \vec{x} in that case are:

$$3b_3 - \frac{5}{3}b_4$$

$$\vec{x} = [-b_3 + \frac{2}{3}b_4] + c[-1]$$
 Observe there are infinitely many solutions, since \vec{x}_3 is a free 0

variable.

Strang Page 136 no: 8

A 1 by 3 system has at least two free variables, so we need two special solutions to A x = 0.

Strang Page 136 no: 9

a)
$$\vec{x} = \vec{x}_1 - \vec{x}_2$$
, $\vec{y} = 4\vec{x}_1 - 4\vec{x}_2$

b) $\vec{z} = 3\vec{x}_1 - 3\vec{x}_2$ is another solution to A x = 0, and $\vec{w} = 4\vec{x}_1 - 3\vec{x}_2$ is another solution to A x = b.

Strang Page 136 no: 10

- a) If $\vec{b} \neq \vec{0}$, then $A(2\vec{x}_p) \neq \vec{b}$.
- b) If A has free columns, and $A \vec{x} = \vec{b}$ is solvable, then it has infinitely many solutions.
- c) If A and \vec{b} are given by:

then the solution with the free variable x_2 equal to zero is x = (5, 0). However y = (2,3) is also a solution and the length of y is less than the length of x.

```
length_of_y=norm([2 3]', 2), length_of_x=norm([5 0]', 2)
length_of_y =
    3.6056
length_of_x =
    5
```

d) There is always the homogeneous solution $\vec{x}_n = \vec{0}$.

Strang Page 136 no: 12

Then that row is a **zero** row. The equation U = c is only solvable provided $c_3 = 0$. The equation A = b might not be solvable.

Strang Page 136 no: 14

The largest possible rank of a 6 by 4 matrix is **4**. Then there is a pivot in every **column** of U. The solution to A x = b is **unique**. The nullspace of A is $\{\vec{0}\}$. An example is:

Strang Page 136 no: 15

The rank of A equals 2.

b) Clearly the rank of A equals at least 2. To determine when rank(A) = 2 and when rank(A) = 3, we again use the E matrix.

```
Ah=[[1 0; 1 1; 1 1] eye(3)], RAh=rref(Ah)
```

```
Ah =
   1
        0
             1
            0 1
0 0
        1
   1
   1
       1
RAh =
        0
            1 0 0
-1 0 1
   1
        1
   0
            0
                 1
                     -1
```

Einv=Ah(:, [1 2 4]), E=inv(Einv)

From the last row of E we deduce that the rank of A equals 2, if $2 - q = 0 \Rightarrow q = 2$ and the rank of A equals 3 if $q \neq 2$.

Strang Page 136 no: 17

We can manually find the L matrix by augmenting A with the identity matrix and applying Gaussian elimination.

```
A=[3 \ 4 \ 1 \ 0; \ 6 \ 5 \ 2 \ 1], \ aug=[A, \ eye(2)]
```

```
A =

3    4    1    0
6    5    2    1

aug =

3    4    1   0   1   0
6    5    2   1   0   1
```

Al=rowcomb(aug, 1, 2, -2)

The L matrix is now the inverse of the matrix formed by the last two columns of A1.

```
L=inv(A1(:, 5:6)), U=A1(:, 1:4), A, LU=L*U
```

Alternatively, we can find L by applying LU decomposition to any extension of the pivot columns of A to a basis fo R^m .

Observe that A = LU (capital U, not u) $\Rightarrow U = L^{-1}A$.

L, U, A, LU=L*U

U=inv(L)*A

b)

This problem is similar to a)

A=[1 0 1 0; 2 2 0 3; 0 6 5 4], aug=[A eye(3)]

A1=rowcomb(aug, 1, 2, -2)

A2=rowcomb(A1, 2, 3, -3)

L=inv(A2(:, 5:7)), U=A2(:, 1:4), A, LU=L*U

Strang Page 136 no: 18

a) Clearly the complete solution is given by $\vec{x} = \vec{x}_p + \alpha \ \vec{x}_{n_1} + \beta \ \vec{x}_{n_2} = (4,0,0) + \alpha \ (-1,1,0) + \beta \ (-1,0,1).$ b) We use MATLAB. $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 4 & 4 \end{bmatrix}', \ \mathbf{xp} = \mathbf{partic}(\mathbf{A}, \ \mathbf{b}), \ \mathbf{xn} = \mathbf{nulbasis}(\mathbf{A})$ $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 0 \\ \mathbf{xn} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 \end{bmatrix}$

Clearly the complete solution is given by $\vec{x} = \vec{x}_p + \alpha \vec{x}_n$.

Strang Page 136 no: 23

```
v =

1
1
3
2
uvT =

2 2 6 4
-1 -1 -3 -2
```

Strang Page 136 no: 27

- a) Let A have full column rank, but not full row rank.
- 1 0
- 0 1
- 0 0
- b) Let A have full row rank, but not full column rank.
- 1 0 0
- 0 1 0
- c) Let A have neither full row rank, nor full column rank.
- 1 0 0
- 0 1 0
- 0 0 0
- d) Let A have full row rank and full column rank (in which case A is invertible)
- 1 0
- 0 1

Strang Page 136 no: 33

 $A=[1 \ 0 \ 2 \ 3; \ 1 \ 3 \ 2 \ 0; \ 2 \ 0 \ 4 \ 9], \ b=[2 \ 5 \ 10]'$

R=rref([A b])

Clearly xp = (-4, 3, 0, 2) and the special solution to A x = 0 is s = (-2, 0, 1, 0). All homogeneous solutions are given by c (-2, 0, 1, 0). These results are readily verified using the partic and nulbasis commands.

xp=partic(A, b), s=nulbasis(A)

```
xp = -4 3 0 2 s = -2 0 1 0
```