Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 16

Strang Page 152 no: 18

Since the column sapce of U is \mathbb{R}^2 , we can pick any basis for \mathbb{R}^2 . B1= {(1, 0), (0, 1)}, B2={(1, 0), (1, 1)}, B3={(4, 5), (-3, 7)}. As two different basis of the row space, we can take: B1:={(1, 0, 1, 0, 1), (0, 1, 0, 1, 0)}, B2={(1, 0, 1, 0, 1), (1, 1, 1, 1, 1)}.

Strang Page 152 no: 19

- a) ... might not span R^4 .
- b) ... are not linearly independent.
- c) ... might be a basis for R^4 .

Strang Page 152 no: 20

If they are linearly independent then rank(A) = n. If they span \mathbb{R}^m , then rank(A) = m. If they are a basis for \mathbb{R}^m , then not only does the rank of A again equal m, but also m = n.

Strang Page 152 no: 21

Let $y = \alpha_1, z = \alpha_2 \Rightarrow x = 2\alpha_1 - 3\alpha_2 \Rightarrow \vec{x} = \alpha_1(2,1,0) + \alpha_2(-3,0,1)$. This implies that B={(2, 1,0), (-3, 0, 1)} forms a basis for this plane.

The intersection with the xy plane is given by the two equations z = 0 and x - 2y = 0. Let $y = \alpha \Rightarrow x = 2\alpha \Rightarrow \vec{x} = \alpha(2,1,0)$. So $B = \{(2, 1, 0)\}$ is a basis for the intersection of the two planes.

The left hand side of x - 2y + 3z = 0 can be interpreted as the dot product of the vectors (1, -2, 3) and (x, y, z). Therefore a basis for all vectors perpendicular to the plane is given by $B=\{(1, -2, 3)\}$

Strang Page 152 no: 23

- a) True ! This can be done by a procedure established in class.
- b) False ! Because one or more of the basis vectors might not be in S.

Strang Page 152 no: 24

A basis for the column space of A is $\{(1, 0, 1), (3, 1, 3)\}$. A basis for the column space of U is $\{(1, 0, 0), (3, 1, 0)\}$. The row spaces of A and U are equal. A basis is given by $\{(1, 3, 2), (0, 1, 1)\}$ The null spaces of A and U are equal. A basis is given by $\{(1, -1, 1)\}$

Strang Page 152 no: 27

```
a) A basis is given by:
```

```
E1=[1 0 0; 0 0 0; 0 0 0], E2=[0 0 0; 0 1 0; 0 0 0], E3=[0 0 0; 0 0 0; 0
0 1]
E1 =
                   0
     1
            0
     0
                   0
            0
            0
                   0
     0
E2 =
     0
            0
                   0
     0
            1
                   0
            0
                   0
     0
E3 =
            0
                   0
     0
                   0
     0
            0
     0
                   1
            0
b) A basis is given by E1, E2 and E3 together with
E4=[0 1 0; 1 0 0 ; 0 0 0], E5=[0 0 1; 0 0 0; 1 0 0], E6=[0 0 0; 0 0 1; 0
1 0]
E4 =
            1 0
     0
```

	1	0	0
	0	0	0
E5	=		
	0	0	1
	0	0	0
	1	0	0
Еб	=		
	0	0	0
	0	0	1
	0	1	0

c) A basis is given by:

E7=[0 1 0; -1 0 0 ; 0 0 0], E8=[0 0 1; 0 0 0; -1 0 0], E8=[0 0 0; 0 0 1; 0 -1 0]

E7 =

0	1	0
-1	0	0
0	0	0

E8	=		
	0	0	1
	0	0	0
	-1	0	0
E8	=		
	0	0	0
	0	0	1
	0	-1	0

Strang Page 152 no: 30

a) Create the coefficient matrix of the nine equations resulting from setting a linear combination of these six permutation matrices (page 92) equal to zero.

						1;010	0 0	1;	1	0	0	1	0	0;	0	0
1010;	001	100;	0 0	0011;	1 1	. 0 0 0 0]										
A =																
1	0	0	0	1	0											
0	1	1	0	0	0											
0	0	0	1	0	1											
0	1	0	0	0	1											
1	0	0	1	0	0											
0	0	1	0	1	0											
0	0	1	1	0	0											
0	0	0	0	1	1											
1	1	0	0	0	0											

The coefficients of a non-trivial linear combination which equals zero can easily be found using the nulbasis command

nulbasis(A)

ans = 1 -1 1 -1 -1 1

Strang Page 152 no: 34

If y(0) = 0 then $A + B + C = 0 \Rightarrow C = -A - B \Rightarrow y(x) = A\cos(x) + B\cos(2x) + (-A - B)\cos(3x)$ $= A(\cos(x) - \cos(3x)) + B(\cos(2x) - \cos(3x))$

This implies that the functions g(x) = cos(x) - cos(3x) and h(x) = cos(2x)-cos(3x) span the indicated vector space. To show that they are linearly independent we set the linear combination A g(x) + B h(x) equal to zero (for all x). If we now substitute x = 1 and x = 2, and investigate the nullspace of the resulting coefficient matrix.

Clearly the only linear combination which gives zero is the trivial linear combination. This means that the functions g and h are linear independent, we already know they span the vector space, so they must be a basis for the vector space.

Be careful, singularity of the matrix M is not a sufficient condition for linear dependence of g and h. (since linear depence requires that a non trivial linear combination equals zero for all x)

Strang Page 152 no: 37

A basis for P_3 is given by $B = \{1, x, x^2, x^3\}$. Let $V = \{p \in P_3 | p(1) = 0\}$ If $p \in V$ and $p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$, then $c_0 + c_1 + c_2 + c_3 = 0 \Rightarrow c_3 = -c_0 - c_1 - c_2$ $\Rightarrow p(x) = c_0(1 - x^3) + c_1(x - x^3) + c_2(x^2 - x^3)$. Clearly the space V is spanned by $f(x) = 1 - x^3$, $g(x) = x - x^3$ and $h(x) = x^2 - x^3$. Linear independence is proved in a way similar to that used in problem 34. Use x = 0, 2, 3 to generate the equations. You should stay away from x = 1 (do you know why?)

M=[1 0 0; -7 -6 -4; -26 -24 -18], nulbasis(M)

M = 1 0 0 -7 -6 -4 -26 -24 -18 ans = Empty matrix: 3-by-0

We quickly conclude that $\{f(x), g(x), h(x)\}$ forms a basis for V.

ATLAST Page 69 no: 6

a) The easiest way to find the row echelon form U of this matrix is to apply PA = LU decomposition to the matrix A.

```
format rat
A=[1 2 5 -2 1; -1 2 3 2 3; 4 -1 2 -1 2; 2 -1 0 3 4], [P, L, U]=plu(A); U
A =
     1
           2
                  5
                       -2
          2 3
-1 2
-1 0
                      2 3
-1 2
3 4
    -1
     4
    2
Pivots in columns:
     1
           2
                 4
```

No p	oivo 3	ots in 5	colum	ns:	
Pivo	ots	in rou	vs:		
	1	2	3		
U =					
	1	2	5	-2	1
	0	4	8	0	4
	0	0	0	7	7
	0	0	0	0	0

- b) The rows of U form a basis for the row space of A.
- c) Since $A = P^{-1}LU$ the coefficients of the desired linear combinations can be read from the matrix $P^{-1}L$.

PinvL=inv(P)*L

PinvL =			
1.0000	0	0	0
-1.0000	1.0000	0	0
4.0000	-2.2500	1.0000	0
2.0000	-1.2500	1.0000	1.0000

For instance (row 4 of A) = 2 (row 1 of U) - 1.25 (row 2 of U) + (row 3 of U). Observe that the fourth row of U does not play a role because it is a zero row!

ATLAST Page 69 no: 8

a) rowbasis(A) ans = 1 -1 4 2 2 -1 5 3 2 -2 2 -1 1 3 2 b) colbasis(A) ans = 1 2 -2 -1 2 2 4 -1 -1 2 -1 3

c) nulbasis(A)									
ans	= -1 -2 1 0 0	-1 -1 0 -1 1							
d) null	oasi	s(A')							
ans	= 1 -1 -1 1								

ATLAST Page 69 no: 9

M=randint(5, 7, 5, 3), nullity=rank(nulbasis(M))

M = 2 -1 2 1 1 -1 -3 1 0 2 3 0 -2 -2 2 nullity = 4

M=randint(3, 4, 5, 3), nullity=rank(nulbasis(M))

 $M = \frac{1 - 4 - 1 - 1}{2 - 1 - 2 - 2}$ -2 1 1 -1 nullity = 1

M=randint(13, 9, 5, 5), nullity=rank(nulbasis(M))

М =									
	-1	0	1	-1	0	4	0	0	1
	2	0	-1	-1	1	-1	-2	0	-1
	4	-4	-1	0	1	1	-1	1	-3
	-3	2	1	1	-1	-1 4	2	0	2 2 -2
	-1	1	1	-2	2		-1	2	2
	2	-1	-1	0	-1	-1	-1	-2	-2
	0	2	1	0	-1	-1	1	1	1
	4	-2	-1	0	-1	-1	-1	-1	-3
	0	-1	-1	2	0	-4	1	0	-1
	0	-1	-1	0	3	-1	-1	2	0 1
	-2	0	1	2	-1	-1	3	1	1
	2	-2 0	0	-1	1	3	-1	1	-1
	-1	0	1	1	0	0	2	2	1

nullity = 4

Observe that in each case the nullity equals n - r, a fact that will be fully substantiated in section 3.6 of the Strang textbook.