Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 17

ATLAST Page 73 no: 13

a) Use the procedure we introduced in class.

```
V=[5 -1; -7 2; 1 -1; 4 -4], R=rref([V eye(4)])
```

A basis for R^4 is given by the columns of the matrix B below.

```
H=[V eye(4)]; B=H(:, [1 2 3 5])
```

B =

b) Since the vectors $\vec{v}_1, \dots, \vec{v}_k$ are linearly independent, none of them can be written as a linear combination of its predecessors. This implies that the first k columns of the matrix obtained by augmenting the V matrix with the identity matrix, will always be pivot columns.

```
c)
```

```
hopefully_B=[V randint(4, 2, 5, 2)], check=rank(hopefully_B)
```

```
hopefully_B =

5 -1 4 3

-7 2 1 0

1 -1 0 -3

4 -4 1 3

check =

4
```

Because the rank of this matrix equals 4, its columns a linearly independent and form a basis for R^4 .

ATLAST Page 73 no: 15

```
a) Use the method explained in class.
V=[3 4 -6 4; -4 0 0 8; -3 -2 3 1; 2 6 -9 11], R=rref(V)
V =
    3
          4
                -6
                      4
    -4
         0
               0
                     8
    -3
         -2
               3
                     1
    2
         6
               -9
                     11
R =
   1.0000 0 0 -2.000
0 1.0000 -1.5000 2.5000
0 0 0
                             0
                                       0
         0
                   0
```

The first two columns are pivot columns, and therefore the first two columns of V form a basis for C(V).

- b) Use all sets of two linearly independent columns of V. (observe that the second and the third column are linearly dependent) The desired bases are: $\{\vec{v}_1, \vec{v}_2\}, \{\vec{v}_1, \vec{v}_3\}, \{\vec{v}_1, \vec{v}_4\}, \{\vec{v}_2, \vec{v}_4\}, \{\vec{v}_3, \vec{v}_4\}.$
- c) Take the answer of (b) plus: $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}, \{\vec{v}_1, \vec{v}_2, \vec{v}_4\}, \{\vec{v}_1, \vec{v}_3, \vec{v}_4\}, \{\vec{v}_2, \vec{v}_3, \vec{v}_4\}, \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}.$

ATLAST Page 73 no: 16

a)																								
V=	[3	-3	4;	4 1	1;	1	-4	2;	3	1 :	3],	W=[-5	-1	2;	2	8	-11;	-3	-4	5;	-3	4	-4]
V	=																							
		3 4 1	_	3 1 4		4 1 2																		
W	=	3		1		3																		
	-	-5 2 -3	_	1 8 4	-1	2 1 5																		
	-	-3		4	-	4																		
X=1	7/W	7, 3	ζ=V\	W																				
X	= _1	L.00	000		1.0	000)	-1.	. 00	00														
	-2 -2	2.00	000		4.0 3.0	000)	-1 -1	.00	00000														
Y	= -(-2	L.00 D.00 2.00	000 000 000	-	2.0 1.0 1.0	000))	-3 -1 2	.00 .00 .00	0 0 0 0 0 0														

Let Sv and Sw denote the span of the v vectors and the w vectors respectively. Since V = WX, Sv is a subset of Sw. Similarly because W=VY, Sw is a subset of Sv. We conclude that Sv = Sw.

b) X*Y, Y*X									
ans	=								
	1.0000	0.0000	-0.0000						
	0	1.0000	-0.0000						
	0	0	1.0000						
ans	=								
	1.0000	0.0000	-0.0000						
	0	1.0000	0						
	0.0000	-0.0000	1.0000						

Since XY = I and YX = I, X and Y are each others inverse.

The reason for that is simple: V = WX and W = VY implies that V = VYX. This last equation expresses the columns of V as linear combinations of themselves, but since the columns of V are linearly independent, such linear combinations are unique and must therefore be the trivial linear combinations $\vec{v}_1 = \vec{v}_1, \dots, \vec{v}_k = \vec{v}_k$, which means that XY = I.

c) Since the set $w = {\vec{w}_1, \dots, \vec{w}_k}$ is linearly independent, span(w) has dimension k. Moreover, since V=WX, the linearly indepent vectors $\vec{v}_1, \dots, \vec{v}_k$ all belong to span(w). This implies that $v = {\vec{v}_1, \dots, \vec{v}_k}$ is a set of k linearly independent vectors in a vector space, span(w), of dimension k, which in turn means that v is a basis for span(w) and consequently span(v) = span(w).