Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 20

Strang Page 253 no: 1

A=[.8 .3; .2 .7], A_s=A^2, A_i=[.6 .6; .4 .4] $A =$ 0.8000 0.3000

[V, D]=eig(A), [V_s, D_s]=eig(A_s), [V_I, D_I]=eig(A_i)

Observe that all three matrices have the same linearly independent eigenvectors: $\vec{v}_1 = (0.8321, 0.5547), \vec{v}_2 = (-0.7071, 0.7071)$. The eigenvalues of A^2 are the averages of the corresponding eigenvalues of *A* and *A*[∞]. This means that for every vector $\vec{x} \in R^2$, $A^2 \vec{x} = A^2 (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2) = \alpha_1 \vec{v}_1 + 0.25 \alpha_2 \vec{v}_2 = \frac{1}{2} (A + A^{\infty}) (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2) = \frac{1}{2} (A + A^{\infty}) \vec{x}$ 1 2 $\vec{x} = A^2(\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2) = \alpha_1 \vec{v}_1 + 0.25 \alpha_2 \vec{v}_2 = \frac{1}{2}(A + A^{\infty})(\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2) = \frac{1}{2}(A + A^{\infty})\vec{x},$ which implies that $A^2 = \frac{1}{2}(A + A)$ 2 $=\frac{1}{2}(A+A^{\infty}).$

```
a)
eig(A), eig(A([2 1], : )) 
ans =
     1.0000
     0.5000
ans =
    -0.5000
     1.0000
```
b) A zero eigenvalue indicates that the matrix is singular. Since rank(A) = rank(U) = rank(rref(A)), singularity is not affected by elimination. When A has an eigenvalue zero, the so do U and rref(A).

Strang Page 253 no: 2

```
A=[1 4; 2 3], [V1, D1]=eig(A), [V2, D2]=eig(A+eye(2)) 
A =\begin{array}{ccc} 1 & & 4 \\ 2 & & 3 \end{array} 2 3
V1 =-0.8944 -0.70710.4472 -0.7071D1 =\begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}\overline{0}V2 =-0.8944 - 0.70710.4472 -0.7071D2 =\begin{array}{ccc} 0 & & 0 \\ 0 & & 6 \end{array} 0 6
```
A+I has the same eigenvectors as A. Its eigenvalues are increased by 1. Proof: Let λ be an eigenvectors as A. T. T. eigenvalues are increased by 1.
Proof: Let λ be an eigenvalue of A associated with the eigenvector \vec{v} , then $(A+I)\vec{v} = \lambda \vec{v} + \vec{v} = (\lambda + 1)\vec{v}$.

Strang Page 253 no: 4

```
A=[-1 3; 2 0], [V, D]=eig(A), [V_s, D_s]=eig(A^2) 
A =\begin{matrix} -1 & 3 \\ 2 & 0 \end{matrix}2
V =<br>-0.8321
    -0.8321 -0.7071<br>0.5547 -0.7071
              -0.7071D =-3 0
      0 2
V_S = 0.8321 0.7071
    -0.5547 0.7071
D_S = 9 0
 0 4
```
 A^2 has the same eigenvectors as *A*, when *A* has eigenvalues λ_1 , λ_2 the A^2 has eigenvalues $\lambda_1^{\; 2}, \lambda$ λ_2^2 . Proof: Let *A* have the eigenvalue λ corresponding to the eigenvector \vec{v} , then $A^2 \vec{v} = A(A\vec{v}) = A(\lambda \vec{v}) = \lambda A \vec{v} = \lambda^2 \vec{v}$.

Strang Page 253 no: 6

A=[1 0; 1 1]; B=A'; eig(A), eig(B), eigenvalues_product=eig(A).*eig(B), eigenvalues_AB=eig(A*B), eigenvalues_BA=eig(B*A)

```
ans =
      1
      1
ans =
      1
      1
eigenvalues_product =
      1
      1
eigenvalues_AB =
     0.3820
     2.6180
eigenvalues_BA =
     2.6180
     0.3820
```
- a) Clearly the eigenvalues of a product of matrices do not equal the product of the eigenvalues of those matrices
- b) The eigenvalues of AB however do equal the eigenvalues of BA. Proof: Let $\lambda \neq 0$ denote an eigenvalue of AB corresponding to the eigenvector \vec{x} , then $AB\vec{x} = \lambda \vec{x}$ implies that $B\vec{x} \neq \vec{0}$. Moreover $AB\vec{x} = \lambda \vec{x} \implies BA(B\vec{x}) = B(AB\vec{x}) = B(\lambda \vec{x}) = \lambda(B\vec{x})$, which means that λ is also an eigenvalue of BA (with eigenvector $B\vec{x}$). To complete the argument we observe that if $\lambda = 0$ is an eigenvalue of AB, then AB is singular and also BA is singular, since $0 = det(AB)$ $= det(BA)$. The latter implies that $\lambda = 0$ is also an eigenvalue of BA

Strang Page 253 no: 8

- a) ..., the way to find λ is to compute $A\vec{x}$.
- b) …, the way to find \vec{x} is to solve $(A \lambda I)\vec{x} = \vec{0}$.

Strang Page 253 no: 9

- a) See the key to problem 4 for a proof.
- b) If λ is an eigenvalue of an invertible matrix A then $\lambda \neq 0$ (otherwise the nullspace of A would contain a non-zero element). Moreover $A\vec{x} = \lambda \vec{x} \Rightarrow \vec{x} = A^{-1}A\vec{x} = A^{-1}(\lambda \vec{x}) = \lambda A^{-1}\vec{x} \Rightarrow A^{-1}\vec{x} = \lambda^{-1}\vec{x}$, so λ^{-1} is an eigenvalue of A^{-1} .
- c) See the key to problem 2 for a proof.

Strang Page 253 no: 11

```
P=[0.2 0.4 0; 0.4 0.8 0; 0 0 1], [V, D]=eig(P) 
P =0.2000 0.4000 0<br>0.4000 0.8000 0
   0.4000 0.8000 0
       0 0 1.0000
V = 0.8944 0.4472 0
   -0.4472 0.8944 0
       0 0 1.0000
D = 0 0 0
 0 1 0
 0 0 1
```
The eigenvalues of P^{100} are $1^{100} = 1$, and $0^{100} = 0$, the eigenvectors are the same as those of P. Observe that *P* has more than one eigenvector associated with the eigenvalue $\lambda = 1$: $\vec{v}_1 = (0.4472, 0.8944, 0)$ (you could say $\vec{v}_1 = (1, 2, 0)$) and $\vec{v}_2 = (0.0, 1)$. This means that any linear combination of \vec{v}_1 and \vec{v}_2 is an eigenvector associated with that eigenvalue. In particular $\vec{v}_1 + \vec{v}_2$ is evok eigenvalue with no zero components. $\vec{v}_1 + \vec{v}_2$ is such eigenvector with no zero components.

Strang Page 253 no: 12

```
u=[1/6 1/6 3/6 5/6]', P=u*u' 
u = 0.1667
      0.1667
      0.5000
      0.8333
P = 0.0278 0.0278 0.0833 0.1389
      0.0278 0.0278 0.0833 0.1389
      0.0833 0.0833 0.2500 0.4167
     0.1389
a) Since u has length 1, \vec{u}^T \vec{u} = 1 and P\vec{u} = \vec{u} \vec{u}^T \vec{u} = \vec{u} \cdot \vec{l} = \vec{u}.
b) If \vec{u}^T \vec{v} = 0, then P\vec{v} = \vec{u} \; \vec{u}^T \vec{v} = \vec{u} \, 0 = 0.
c) 
nulbasis(P) 
ans =<br>-1\begin{matrix} -1 & -3 & -5 \\ 1 & 0 & 0 \end{matrix}\overline{0} 0 1 0
 0 0 1
```
Strang Page 253 no: 15

Observe that if *A* denotes an n by n matrix, the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree *n* with leading coefficient $(-1)^n$. (just look at the leading term of

$$
p(\lambda) = \det(A - \lambda I) = \sum_{j=1}^{n} \det(P) (A - \lambda I)_{1,j_1} \cdots (A - \lambda I)_{n,j_n}.
$$
 This implies that

$$
p(\lambda) = \det(A - \lambda I) = \prod_{j=1}^{n} (\lambda_j - \lambda).
$$
 Now let $\lambda = 0$ to obtain $\det(A) = \prod_{j=1}^{n} \lambda_j$.

Strang Page 253 no: 16

a) det $(A - \lambda I) = (\lambda - 3)(\lambda - 4) = \lambda^2 - 7\lambda + 12$ b) ... and $\lambda = (a + d - \sqrt{w})/2$ c) ... their sum is $a + d$.

This result will be generalized in the section 6.2.

Strang Page 253 no: 18

- a) Eigenvectors associated with distinct eigenvalues are linearly independent, so the sum of the dimensions of the eigenspaces of any n by n matrix cannot be greater than n. Since the 3 by 3 matrix B has three distinct eigenvalues, the dimension of each of the eigenspaces has to be exactly one. Since the eigenspace associated with the eigenvalue $\lambda = 0$ is exactly the nullspace of B, this means that the rank of B equals $3-1 = 2$.
- b) Since rank(B) = 2 and B is 3 by 3, we know that $det(B) = 0$ an therefore $\det(B^T B) = \det(B^T) \det(B) = 0$.
- c) The eigenvalues of $B^T B$ are not uniquely determined by the eigenvalues of B . As an 000 $0\quad 0\quad 0$

example of this fact consider the matrices $B_1 = 0 \quad 1 \quad 0$ and $B_2 = 0 \quad 1 \quad 0$. Both 002 0 1 2

matrices have eigenvalues 0, 1, and 2, but the eigenvalues of $B_1^T B_1$ are 0, 1, and 4, while the eigenvalues of $B_2^T B_2$ are $0,3 + \sqrt{5}$, and $3 - \sqrt{5}$.

d) The eigenvalues of $(B+I)^{-1}$ are the reciprocals of the eigenvalues of $B+I$ (which are 1, 2, and 3). The desired eigenvalues are therefore, $1, \frac{1}{2}$ 2 $\frac{1}{2}$ and $\frac{1}{2}$ 3 .

Strang Page 253 no: 23

Because all eigenvalues are zero, both the trace and the determinant of the matrix need to be zero. Observe that in the 2 by 2 case, these equations are not only a necessary, but also a sufficient condition for zero to be the only eigenvalue. If *A a b* $=\begin{bmatrix} c & -a \end{bmatrix}$, the equation det(A) = 0 quickly leads to the solutions { $a = a, c = c, b = -\frac{a^2}{a}$ }, or { $a = 0, c = 0, b = b$ } *c* . It is a matter of elementary arithmetic to show that in each of these two cases $A^2 = O$. Examples are 0 1 0 0 0 0 1 0 $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ for {a, b, c} equal to {0, 1, 0}, {0, 0, 1}, and {1, -1, 1} respectively.