Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Key Homework 21

Strang Page 266 no: 3

S=[1 1; 0 1], L=[2 0; 0 5], A=S*L*inv(S) $S =$ 1 1 0 1 $L =$ 2 0 0 5 $A =$ 2 3 0 5

Strang Page 266 no: 5

- a) Not necessarily, because A could have an eigenvalue zero.
- b) Yes, because A has a full set of linearly independent eigenvectors.
- c) Yes, because the columns of S are linearly independent.
- d) Not necessarily, but constructing a counter example takes some effort. We start with an invertible, yet not diagonalizable matrix S.

S=[2 1 0; -1 0 1; 1 3 1], Sinv=inv(S), [vS, dS]=eig(S)

```
S = 2 1 0
    \begin{array}{cccc} -1 & & 0 & & 1 \\ 1 & & 3 & & 1 \end{array} 1 3 1
Sinv =
   0.7500 0.2500 -0.2500<br>0.5000 -0.5000 0.5000-0.5000 0.7500 1.2500 -0.2500
vS = -0.1961 0.0000 + 0.7071i 0.0000 - 0.7071i
 -0.5883 -0.0000 + 0.0000i -0.7845<br>-0.7845 0.0000 + 0.7071i 0.0000 - 0.7071i
                     0.0000 + 0.7071i 0.0000 - 0.7071idS = -1.0000 0 0
        0 2.0000 + 0.0000i
                                          2.0000 - 0.0000i
```
Now we create a 3 by 3 matrix A such that the eigenvectors of A are the columns of S, with eigenvalues 1, 2 and 3 respectively. (The 1, 2 and 3 are arbitrarily chosen integers). To do this, let B denote the matrix whose columns are the columns of S multiplied by 1, 2, and 3 respectively, then $AS = B$ and $A = BS^{-1}$.

```
B=[S(:, 1) 2*S(:, 2) 3*S(:,3 )], A=B*Sinv 
B = 2 2 0
-1 0 3
 1 6 3
A =0.5000 -0.5000 0.5000<br>1.5000 3.5000 -0.50001.5000 3.5000<br>0.5000
         0 1.0000 2.0000
```
This matrix A has the property that the matrix S with the eigenvectors of A as its columns, is invertible, yet not diagonalizable.

Strang Page 266 no: 6

… A is a diagonal matrix.

 \ldots It followes directly from the Gauss Jordan elimnation process, that if *S* is (upper or lower) triangular and invertible, then S^{-1} is also (upper or lower) triangular. In this case so are SA and SAS^{-1} .

Strang Page 266 no: 8

Similar to the procedure followed in problem 5, let $S = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$! ! $1 \quad -1$ and *B \$ %* $=$ $a \quad -b$, then

$$
A = BS^{-1} = \begin{array}{ccc} \frac{a}{2} + \frac{b}{2} & \frac{a}{2} - \frac{b}{2} \\ \frac{a}{2} - \frac{b}{2} & \frac{a}{2} + \frac{b}{2} \end{array} = \begin{array}{ccc} c & d \\ d & c \end{array}.
$$

Strang Page 266 no: 12

Look at the characteristic polynomial of the Fibonacci matrix $A =$! ! $p(\lambda) = \lambda^2 - \lambda - 1.$ This implies that $\lambda_i^2 = \lambda_i + 1 \Rightarrow \lambda_i^{k+2} = \lambda_i^{k+1} + \lambda_i^k$ *) ** $\lambda_i^2 = \lambda_i + 1 \Rightarrow \lambda_i^{k+2} = \lambda_i^{k+1} + \lambda_i^k, i = 1, 2, k = 1, 2, \cdots$.

Strang Page 266 no: 13

... $A^{20}(\vec{x}_1 + \vec{x}_2) = \lambda_1^{20}\vec{x}_1 + \lambda_2^{20}\vec{x}$ 20 1 \cdot \cdot 2 $(\vec{x}_1 + \vec{x}_2) = \lambda_1^{20} \vec{x}_1 + \lambda_2^{20} \vec{x}_2$ and its second component equals $\lambda_1^{20} + \lambda_2^{20}$ + λ_2^{20} , which is easily computed to be:

```
format long
FN_20=((1+sqrt(5))/2)^20+((1-sqrt(5))/2)^20 
FN 20 = 1.512700000000001e+004
```
Strang Page 266 no: 15

a) True! Because the matrix A does not have zero as an eigenvalue.

b) False! Because, the matrix could either be, or not be, diagonalizable. In the example below the matrix A_1 is diagonalizable, but the matrix A_2 is not. However both matrices have 2, 2, and 5 as their eigenvectors.

We check this claim using MATLAB.

```
A1=[2 0 0; 0 2 0; 0 0 5], [V1, D1]=eig(A1)
```


While

A2=[2 1 0; 0 2 0; 0 0 5], [V2, D2]=eig(A2) $A2 =$ 2 1 0 0 2 0 0 0 5 $V2 = 1.0000$ -1.0000 0 $\begin{array}{cccc} 0 & 0.0000 & & 0 \\ 0 & 0 & 1.0000 \end{array}$ 0 0 1.0000 $D2 =$ 2 0 0 0 2 0 0 0 5

c) False! See the answer to (b).

Strang Page 266 no: 18

The matrix $A =$ 3 l $\frac{1}{2}$, is not diagonalizable because the rank of $(A - 3I)$ equals one (and not zero). **A=[3 1; 0 3], r=rank(A-3*eye(2))** $A =$ 3 1 0 3 r = $1₁$

Changing one of the 3's will create distinct eigenvalues, and linearly independent eigenvectors. Changing the 0 will have the same effect.

Observe that changing the 1 will have NO effect on $\det(A - \lambda I)$, so the one and only eigenvalue will remain 3. Moreover, if the change is just 0.1, the rank of $(A - 3I)$ will still be one.

However if we were to change the one to a zero, then the rank of $(A - 3I)$ would be zero and the matrix would be diagonalizable. (in fact: it would already be diagonal)

Strang Page 266 no: 26

… since the left side has trace zero. (the diagonal elements of AB are equal to the diagonal elements of BA)

We find a scalar *a* such that if $E = a$ $1 \quad 0$ $\frac{0}{1}$, then $EE^T - E^T E = \frac{-1}{0} \frac{0}{1}$. This equation implies that $\begin{pmatrix} -a^2 & 0 \\ 0 & 2 \end{pmatrix} = -$ *\$* $\overline{\mathbf{c}}$ $\overline{\mathbf{c}}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $1 \quad 0$ 1 . We can take *a* equal to 1 or -1.

Strang Page 266 no: 31

```
A=[5 4; 4 5], [VA, DA]=eig(A) 
A = 5 4
 4 5
VA = 0.7071 0.7071
   -0.7071 0.7071
DA = 1 0
 0 9
```
We now compute a matrix square root of A and check the result.

```
RA=VA*sqrt(DA)*inv(VA), checkA=RA^2 
RA = 2 1
       1 2
checkA =
      \begin{array}{ccc} 5 & & 4 \\ 4 & & 5 \end{array} 4 5
```
Of course the matrix B has no real matrix square root, because the square root of -1 is not real. However a complex square root can easily be computed.

```
B=[4 5; 5 4], [VB, DB]=eig(B), RB=VB*sqrt(DB)*inv(VB), checkB=RB^2
```

```
B =\begin{array}{ccc} 4 & & 5 \\ 5 & & 4 \end{array} 5 4
VB = 0.7071 0.7071
     -0.7071DB =\begin{matrix} -1 & 0 \\ 0 & 9 \end{matrix}\overline{0}RR = 1.5000 + 0.5000i 1.5000 - 0.5000i
      1.5000 - 0.5000i 1.5000 + 0.5000i
checkB =
        \begin{array}{ccc} 4 & & 5 \\ 5 & & 4 \end{array} 5 4
```
ATLAST Page 142 no: 1

Unfortunately these matrices are not in the list of our **eigshow** command. (Sorry !!!) All we can do is: compute the eigenvalues and eigenvectors and use the so generated information to answer the questions.

```
A=[2 0; 1.5 0.5], [V, D]=eig(A)
```

```
A =2.0000 0<br>1.5000 0.5000
               0.5000
V =0 0.7071<br>00 0.7071
     1.0000
D =0.5000 0<br>0 2.0000
                   0 2.0000
```
1a) The eigenvalues are distinct, so the eigenvectors are linearly independent, and the eigenvalues are real and non-zero, so \vec{x} and $A\vec{x}$ will line up four times

1b) The eigenvalues are 0.5 and 2.

1d) The eigenvectors are linearly independent, so A is diagonalizable.

```
A=[-2 1; 1 -2], [V, D]=eig(A)
A =\begin{matrix} -2 & \hspace{1.5cm} 1 \\ 1 & \hspace{1.5cm} -2 \end{matrix}1 -V = 0.7071 0.7071
     -0.7071 0.7071
D = -3.0000 0
            0 -1.0000
```
2a) The eigenvalues are again distinct, so the eigenvectors are linearly independent, and the eigenvalues are real and non-zero, so \vec{x} and $\vec{A}\vec{x}$ will line up four times.

- 2b) The eigenvalues are -3 and -1.
- 2d) The eigenvectors are linearly independent, so A is diagonalizable.

```
A=[-1 2; -2 4], [V, D]=eig(A)
```

```
A =\begin{array}{ccc} -1 & 2 \\ -2 & 4 \end{array}-2V =-0.8944 -0.4472-0.4472 - 0.8944D = 0 0
 0 3
```
3a) The eigenvalues are again distinct, so the eigenvectors are linearly independent, moreover since the eigenvalues are real, but one of them is zero, \vec{x} and $\vec{A}\vec{x}$ will line up two times.

3b) The eigenvalues are 0 and 3.

3d) The eigenvectors are linearly independent, so A is diagonalizable.

A=[1 -1; 1 1], [V, D]=eig(A)

```
A =\begin{array}{ccc} 1 & & -1 \\ 1 & & 1 \end{array} 1 1
V =-0.7071 -0.7071 0 + 0.7071i 0 - 0.7071i
D =\begin{bmatrix} 1.0000 + 1.0000i & 0 \\ 0 & 1.0000 \end{bmatrix}1.0000 - 1.0000i
```
4a) The eigenvalues are distinct, so the eigenvectors are linearly independent, however the eigenvalues are distinct, so the eigenvectors are in
eigenvalues are complex, so \vec{x} and $\vec{A}\vec{x}$ will never line up.

- 4b) The eigenvalues are $1 + i$ and $1 i$.
- 4d) The eigenvectors are linearly independent, so A is diagonalizable.

ATLAST Page 142 no: 5

a) **A=gallery(5)**

 $A =$ -9 11 -21 63 -252 70 -69 141 -421 1684 -575 575 -1149 3451 -13801 3891 -3891 7782 -23345 93365 2048

e=eig(A)

Obviously this contradicts our expectation that that the eigenvalues of A^5 are the fifth power of the eigenvalues of A . (the discrepancy occurs because of difficulties with the numeric calculation of the eigenvalues of A)

```
b)
p=poly(A), e=roots(p) 
p =<br>1.0000 -0.0000
                       0.0000 -0.0000 0.0000 -0.0000e = -0.0328 + 0.0243i
 -0.0328 - 0.0243i 0.0130 + 0.0379i
    0.0130 - 0.0379i
    0.0396
```
These results are equally unsatisfactory.

c) Since the matrix A has integer entries, the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ must have integer coefficients.

```
p=round(p), roots(p)
```

```
p = 1 0 0 0 0 0
ans =
    0
    0
    0
    0
    0
```
That's more like it !!!

The roots of a polynomial can be extremely sensitive to changes in the coefficients. A very small change (roundoff error) in the coefficients may result in a significant change in the roots. That is what causes the erroneous answers in (a) and (b).

d) Proof: Let *B* be nilpotent of order *k* and suppose that *B* has an non-zero eigenvalue λ . Then $\exists \vec{x} \neq \vec{0}$ such that $B\vec{x} = \lambda \vec{x} \Rightarrow B^k \vec{x} = \lambda^k \vec{x} \neq \vec{0}$. This clearly contradicts the fact

that \hat{B} is nilpotent of order \hat{k} . Therefore our assumption that \hat{B} has a non-zero eigenvalue must be false, and zero is the only eigenvalue of \tilde{B} .

```
e)
```
R=rref(A)

$R =$

Clearly rank(A) = 4, and the nullity (that is the dimension of the nullspace) of A is $5 - 4 = 1$. This implies that the geometric multiplicity of the eigenvalue $\lambda = 0$ equals 1, which is nowhere near its algebraic multiplicity 5, so A is not diagonalizable.