Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Lesson 3 **Elimination using Matrices**

3.1 Elimination using Matrices

• Example 3.1.1

6y + 11z = 5, 5x - 7y - 4z = 13.

Code the augmented matrix and use the rowcomb, rowswap and rowscale commands to perform the elimination process. Since no irrationals are involved it is illustrative to use the rational format.

 rowcomb(A, i, j, l) rowswap(A, i, j) rowscale(A, i, l) 		will add l times the i-th row to the j-th row of A will swap the i-th and th j-th rows of A . will multiply the i-th row of A by l .								
format	rational,	aug=[2	3 -5	4; 4	6 11	5 ; 5	-7	-4	13]	
aug =	2 4 5	3 6 -7		-5 11 -4			4 5 13			
Multipl	y the first row l	oy 1/2.								
aug2=r	cowscale(aug	, 1, 1,	/ 2)							
aug2 =	- 1 4 5	3/2 6 -7		-5/2 11 -4			2 5 13			

Multiply the first row by -4 and add to the second row.

aug3=rowcomb(aug2, 1, 2, -4)

aug3 =			
1	3/2	-5/2	2
0	0	21	-3
5	-7	-4	13

Multiply the first row by -5 and add to the third row.

aug4=rowcomb(aug3, 1, 3, -5)

aug4 =13/2-5/220021-30-29/217/23

Swap the second and the third row.

aug5=rowswap(aug4, 2, 3)

aug5 =			
1	3/2	-5/2	2
0	-29/2	17/2	3
0	0	21	-3

Multiply the second row -2/29.

aug6=rowscale(aug5, 2, -2/29)

aug6 = 1 3/2 -5/2 2 0 1 -17/29 -6/29 0 0 21 -3

Multiply the second row by -3/2 and add to the first row.

```
aug7=rowcomb(aug6, 2, 1, -3/2)
```

aug7 =

1	0	-47/29	67/29
0	1	-17/29	-6/29
0	0	21	-3

Multiply the third row by 1/21.

aug8=rowscale(aug7, 3, 1/21)

aug8 =

1	0	-47/29	67/29
0	1	-17/29	-6/29
0	0	1	-1/7

Multiply the third row by 47/29 and add to the first row.

aug9=rowcomb(aug8, 3, 1, 47/29)

aug9 =			
1	0	*	422/203
0	1	-17/29	-6/29
0	0	1	-1/7

The star indicates that the (1,3) element of aug9 is very small but not positively identifiable as a zero. Let us take a look.

```
format short, aug9, format rat
```

aug9 = 1.0000 0 -0.0000 2.0788 0 1.0000 -0.5862 -0.2069 0 0 1.0000 -0.1429

For our purposes a star will mean zero. We now finish the elimination process by multiplying the third row by 17/29 and adding it to the second row.

```
aug10=rowcomb(aug9, 3, 2, 17/29)
```

auq10 =			
1	0	*	422/203
0	1	0	-59/203
0	0	1	-1/7

The solution to the original system is now immediately clear: x = 422/203, y = -59/203 and z = -1/7. The matrix **aug10** is said to be in **Reduced Row Echelon** form.

Actually the **Reduced Row Echelon** of a given matrix is unique (we will prove that at a later time), and **MATLAB** contains a command that will immediately produce the **Reduced Row Echelon** form of a matrix. That command, named **rref**, is illustrated below.

aug, rref(aug	3)		
aug =			
2	3	-5	4
4	6	11	5
5	-7	-4	13
ans =			
1	0	0	422/203
0	1	0	-59/203
0	0	1	-1/7

You will probably realize that **rref** is a very powerful tool and we will make heavy use of it in the remaining part of the course.