Math 323 Linear Algebra and Matrix Theory I Fall 1999

Dr. Constant J. Goutziers Department of Mathematical Sciences goutzicj@oneonta.edu

Lesson 4 Matrix Operations

4.1 Matrix Operations

• Example 4.1.1 If A = [2 3 -5; 1 2 7] and B = [2 -1 10; 11 9 4], then find 5A and A + 3B.

Matrices can be multiplied by a scalar and added together much like vectors, provides the matrices have the same size, that is the same number of rows and the same number of columns.

A = [2 3 -5; 1 2 7], B = [2 -1 10; 11 9 4], ans_1=5*A, ans_2=A+3*B

A =		
2	3	-5
1	2	7
B =		
2	-1	10
11	9	4
ans_1 =		
10	15	-25
5	10	35
ans_2 =		
8	0	25
34	29	19

• Example 4.1.2

If A = $[2 \ 3 \ -5; \ 1 \ 2 \ 7]$ and B = $[2 \ -1 \ 10 \ 7; \ 11 \ 9 \ 4 \ 2; \ -3 \ 2 \ 1 \ 8]$, then find AB.

Two matrices A and B can be multiplied to form AB if the number of columns of A equals the number of rows of B. Our matrix A has three columns while the matrix B has three rows, the product AB therefore exists. On the other hand the product BA does not exist, do you know why?

A = [2 3 -5; 1 2 7], B = [2 -1 10 7; 11 9 4 2; -3 2 1 8], AB=A*B A =

2 3 -5 1 2 7

-1	10	7
9	4	2
2	1	8
15	27	-20
31	25	67
	-1 9 2 15 31	$ \begin{array}{ccc} -1 & 10 \\ 9 & 4 \\ 2 & 1 \\ 15 & 27 \\ 31 & 25 \\ \end{array} $

• Example 4.1.3

If A = $[2 \ 3 \ -5; \ 1 \ 2 \ 7; \ -2 \ 7 \ -6]$ and B = $[2 \ -1 \ 10 \ 7; \ 11 \ 9 \ 4 \ 2; \ -3 \ 2 \ 1 \ 8]$, then create the block matrix [A B].

Block matrices can be entered in **MATLAB** in a manner similar to that of ordinary matrices. The blocks are merely interpreted as elements of the new matrix, in this example as the elements of a matrix with one row and two columns.

```
A = [2 3 -5; 1 2 7; -2 7 -6], B=[2 -1 10 7; 11 9 4 2; -3 2 1 8],
blockmatrix=[A B]
```

A :	=						
	2	3	-5				
	1	2	7				
	-2	7	-6				
в :	=						
	2	-1	10	7			
	11	9	4	2			
	-3	2	1	8			
blo	ockmat	rix =					
	2	3	-5	2	-1	10	7
	1	2	7	11	9	4	2
	-2	7	-6	-3	2	1	8