CHEM 111- Gallagher Fall 2009

Combustion Analysis

Technique used to determine the amount of carbon and hydrogen in combustible compounds.

0	All the	carbon	in the	sample is	converted into	,	

- All the hydrogen in the sample is converted into
- o How do we use this knowledge?
 - Determine the # moles of CO₂ and H₂O
 - o Determine the # moles of C and H
 - o Determine the mole ratio of C to H→empirical formula
- What if there is another element in the compound?
 - After determining the # moles of C and H, find out how many grams of each this corresponds to
 - o Total mass of compound (g of C + g of H) = mass of other element

Example #1:

3.47g of a compound containing C, H, and F was burned. 7.51g CO_2 and 3.08g H_2O were recovered. What is the empirical formula of the compound?

Molar masses:

CO₂=44.01g/mol

 $H_2O=18.016g/mol$

C=12.011g/mol

H=1.01g/mol

O=16.00g/mol

Empirical Formula= $C_xH_vF_z$

What are x, y, and z?

CHEM 111- Gallagher Fall 2009

Try this one	Trv	this	one!
--------------	-----	------	------

A 1.00-gram sample if vitamin C (which contains only C, H, and O) was subjected to combustion analysis; 1.50 grams of CO_2 and 0.41 grams of H_2O were produced. The molecular weight of vitamin C is 176.12. Determine the molecular formula of vitamin C.

Molar masses:	CO ₂ =44.01g/mol C=12.011g/mol	H₂O=18.016g/mol H=1.01g/mol	O=16.00g/mol							
Moles of CO₂ produced										
Moles of C in original sample										
Mass of C in original sample										
Moles of H₂O produced										
Moles of H in original sample										
Mass of H in original sample										
Mass of oxygen (obtained by difference):										
Moles of oxygen in original sample										
Mole ratios (divide e Carbon:	ach by the smallest):									
Hydrogen:										
Oxygen:										

CHEM 111- Gallagher Fall 2009

Empirical Formula= C H O