$P_{\text {solvent }}=X_{\text {solvent }} P^{\circ}{ }_{\text {solvent }}$

Example:
The vapor pressure of water at $20^{\circ} \mathrm{C}$ is 20.1 mm Hg . What is the pressure of 100 g water mixed with 100 g ethylene glycol, $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{OH})_{2}$?

Vapor Pressures at $50^{\circ} \mathrm{C}$
Water $=99 \mathrm{mmHg}$
Ethanol $\quad=232 \mathrm{mmHg}$

- Distill a 10% alcohol solution.

Elevation in boiling point $=\Delta T_{\text {bp }}=K_{\text {bp }} m_{\text {solute }}$

TABLE Some Boiling Point Elevation and Freezing Point Depression Constants

Solvent	Normal Boiling Point (${ }^{\circ} \mathrm{C}$) Pure Solvent	$K_{\text {bp }}\left({ }^{\circ} \mathrm{C} / \mathrm{m}\right)$	Normal Freezing Point ($\left.{ }^{\circ} \mathrm{C}\right)$ Pure Solvent	$K_{\text {fp }}\left({ }^{\circ} \mathrm{C} / m\right)$
Water	100.00	+0.5121	0.0	-1.86
Benzene	80.10	+2.53	5.50	-5.12
Camphor	207.4	+5.611	179.75	-39.7
Chloroform $\left(\mathrm{CHCl}_{3}\right)$	61.70	+3.63	-	-

Freezing point depression $=\Delta T_{\mathrm{fp}}=K_{\mathrm{fp}} m_{\text {solute }}$

TABLE	Some Boiling Point Elevation and Freezing Point Depression Constants					

$П=c R T$
$\Pi=$ osmotic pressure in atm
$\mathrm{c}=$ concentration in $\mathrm{mol} / \mathrm{L}$
$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$
$\mathrm{T}=$ temperature in Kelvin

12.5 g of a cellulose derivative was dissolved in 1 L of water. The osmotic pressure of this solution was 0.00210 atm at $30^{\circ} \mathrm{C}$. What is the molar mass of this molecule?

