$P_{\rm solvent} = X_{\rm solvent} P^{\circ}_{\rm solvent}$

Example:

The vapor pressure of water at 20 $^{\circ}$ C is 20.1 mm Hg. What is the pressure of 100 g water mixed with 100g ethylene glycol, C₂H₂(OH)₂?

Vapor Pressures at 50 °C

- Water=99 mmHg
- Ethanol =232 mmHg
- Distill a 10% alcohol solution.

TABLE Some Boiling Point Elevation and Freezing Point Depression Constants

Solvent	Normal Boiling Point (°C) Pure Solvent	K _{bp} (°C∕m)	Normal Freezing Point (°C) Pure Solvent	<i>К</i> _{fp} (°С/ <i>m</i>)
Water	100.00	+0.5121	0.0	-1.86
Benzene	80.10	+2.53	5.50	-5.12
Camphor	207.4	+5.611	179.75	-39.7
Chloroform (CHCl₃)	61.70	+3.63	_	_

Freezing point depression = $\Delta T_{\rm fp} = K_{\rm fp} m_{\rm solute}$

TABLE	Some Boiling Point Elevation and Freezing Point Depression Constants				
Solvent	Normal Boiling Point (°C) Pure Solvent	К _{ър} (°С/ <i>т</i>)	Normal Freezing Point (°C) Pure Solvent	К _{fp} (°C/m)	
Water	100.00	+0.5121	0.0	-1.86	
Benzene	80.10	+2.53	5.50	-5.12	
Camphor	207.4	+5.611	179.75	-39.7	
Chloroform (CHCl₃)	61.70	+3.63	_	—	

∏=cRT

 Π = osmotic pressure in atm

c= concentration in mol/L

R= 0.0821L·atm/K·mol

T= temperature in Kelvin

12.5g of a cellulose derivative was dissolved in 1L of water. The osmotic pressure of this solution was 0.00210 atm at 30°C. What is the molar mass of this molecule?