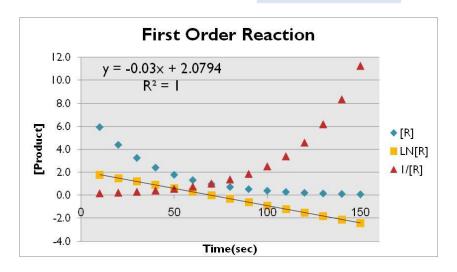
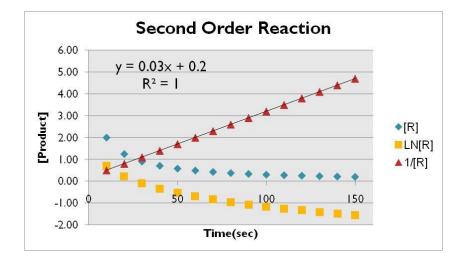

Zero-Order Reactions

If a reaction $(R \longrightarrow \text{products})$ is zero order, the rate equation is


$$-\frac{\Delta[\mathsf{R}]}{\Delta t} = k[\mathsf{R}]^0 \qquad [\mathsf{R}]_0 - [\mathsf{R}]_t = kt$$

First-Order Reactions

Suppose the reaction " $R \longrightarrow$ products" is first order.


$$-\frac{\Delta[R]}{\Delta t} = k[R] \qquad \qquad \ln \frac{[R]_t}{[R]_0} = -kt$$

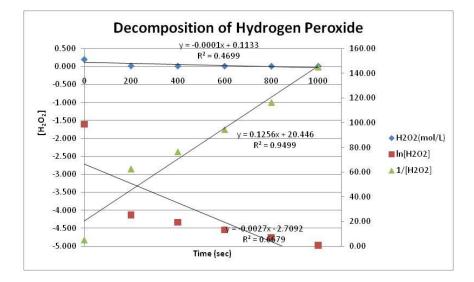
Second-Order Reactions

Suppose the reaction "R \longrightarrow products" is second order.

$$-\frac{\Delta[\mathsf{R}]}{\Delta t} = k[\mathsf{R}]^2 \qquad \qquad \frac{1}{[\mathsf{R}]_t} - \frac{1}{[\mathsf{R}]_0} = kt$$

Zero order	First order	Second order
$\begin{bmatrix} \mathbf{R} \end{bmatrix}_t = -kt + \begin{bmatrix} \mathbf{R} \end{bmatrix}_0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $y \qquad mx \qquad b$	$\ln [R]_t = -kt + \ln [R]_0$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $y \qquad mx \qquad b$	$\frac{1}{[R]_t} = + kt + \frac{1}{[R]_0}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $y \qquad mx \qquad b$

Examples:


The decomposition of dinitrogen pentoxide is a first order process. $2 N_2 O_5(g) \longrightarrow 4 NO_2(g) + O_2(g)$ $rate = \frac{-\Delta [N_2 O_5]}{\Delta t} = k[N_2 O_5]$ $k = \frac{0.0067}{min}$ If the initial concentration of N_2 O_5 is 0.70 M, what will the concentration be in 5.6 minutes?

The decomposition of nitrous oxide at 565 $^{\rm o}{\rm C}$,

 $2 N_2 O \rightarrow 2 N_2 + O_2$

is second order in $N_2O.$ If the reaction is initiated with $\left[N_2O\right]$ equal to 0.108 M,

and drops to 0.0940 M after 1250 s have elapsed, what is the rate constant?

