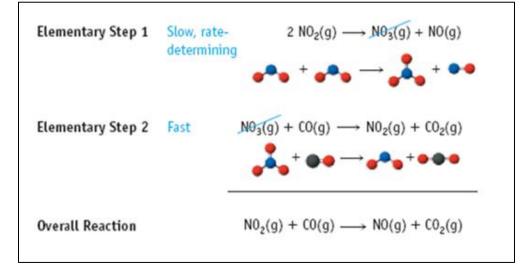
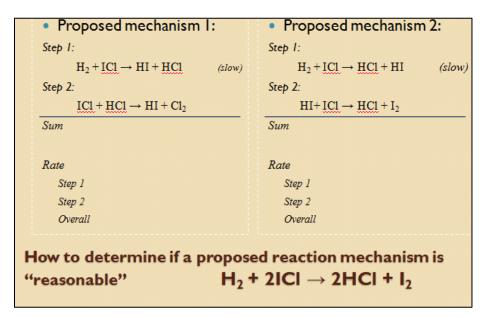

Example: Identifying overall reaction and intermediates/catalysts


Step 1.Unimolecular $0_3(g) \rightarrow 0_2(g) + 0(g)$ Step 2.Bimolecular $0_3(g) + 0(g) \rightarrow 2 \ 0_2(g)$ Overall Reaction: $0_3(g) + 0(g) \rightarrow 2 \ 0_2(g)$


CLICKER QUESTION $2 \text{ NO}(g) \rightarrow \text{N}_2\text{O}_2(g)$ $\text{N}_2\text{O}_2(g) + \text{H}_2(g) \rightarrow \text{N}_2\text{O}(g) + \text{H}_2\text{O}(g)$ $\text{N}_2\text{O}(g) + \text{H}_2(g) \rightarrow \text{N}_2(g) + \text{H}_2\text{O}(g)$ Overall Reaction: Intermediates? Catalysts?

 $\begin{array}{ll} \textbf{Step 1} & (\textbf{slow rate-determining step}) \\ H_2O_2(aq) + I^-(aq) \longrightarrow IO^-(aq) + H_2O(\ell) \\ \textbf{Step 2} & H_2O_2(aq) + IO^-(aq) \longrightarrow I^-(aq) + H_2O(\ell) + O_2(g) \\ \hline \textbf{Overall} & 2 H_2O_2(aq) \longrightarrow 2 H_2O(\ell) + O_2(g) \\ \end{array}$

Elementary Step	Molecularity	Rate Equation
$A \rightarrow product$	Unimolecular	Rate= k[A]
A + B \rightarrow product	Biomolecular	Rate= k[A][B]
$A + A \rightarrow product$	Bimolecular	Rate= $k[A]^2$
$2A + B \rightarrow product$	Termolecular	Rate= k[A] ² [B]

