
Thermal Energy and Phase Changes

Heat added (each division corresponds to 4 kJ)

EXAMPLE: How much total energy does it take to convert 40.0 g of ice at -30 °C to steam at 125 °C?

<u>Data you need to know:</u>

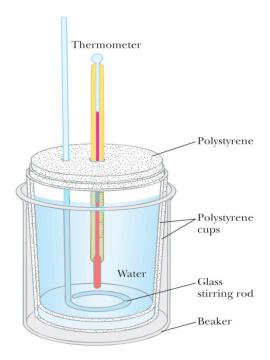
 $\Delta H_{fus} = 333 \text{ J/g} \qquad \Delta H_{vap} = 2256 \text{ J/g} \\ C_{ice} = 2.06 \text{ J/g}^{\circ}\text{C} \qquad C_{water} = 4.18 \text{ J/g}^{\circ}\text{C} \qquad C_{steam} = 1.92 \text{ J/g}^{\circ}\text{C}$

Heat ice to melting point

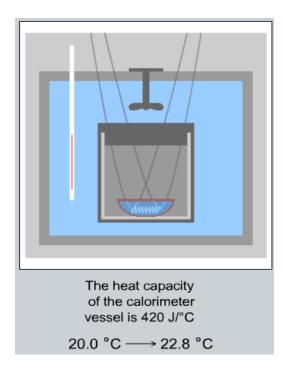
Melt ice

Heat water to boiling point

Vaporize water


Heat steam to 125 °C

Clicker Question:


50g of ethanol is at 20°C. I add 6385 J of heat. What is the final temperature and state of the ethanol? (T_{bp} =78.4°C, C_{etoh} = 1.43J/g-°C, ΔH_{vap} =837.0J/g)

<u>Calorimetry</u>

1. Constant Pressure

2. Constant Volume

	exothermic	endothermic
ΔΤ		
$\Delta \mathbf{H}_{reaction}$		
q _{system}		
q _{surroundings}		

<u>Hess' Law</u>

- > Enthalpy is a state function.
- > If a reaction can be written as the sum of two or more reactions, the ΔH for the net reaction is the sum of the ΔH 's for the individual steps.
- > If a reaction is reversed, the sign of ΔH is reversed.
- > If the coefficients of the reactants/products are multiplied by a number, then the ΔH must be multiplied by that number, as well.