
Chapter 1

The Real Numbers

1.1 The Real Number System

1. Write the following expressions in equivalent forms not involving absolute values.

b. a+ b− |a− b|
Solution
In order to eliminate the absolute value we distinguish two cases, a ≥ b and a < b.
• Case 1: a ≥ b
Then a+ b− |a− b| = a+ b− (a− b) = 2b = 2min {a, b}

• Case 2: a < b
Then a+ b− |a− b| = a+ b+ (a− b) = 2a = 2min {a, b}

We conclude that for all real numbers a and b, a+ b− |a− b| = 2min {a, b}.

2. Let F denote the field consisting of the set {0, 1} with operations + and · defined as

0 + 0 = 1 + 1 = 0, 1 + 0 = 0 + 1 = 1
0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1

Show that it is impossible to define an order < on the field F that has properties

(F) If a, b ∈ F , then exactly one of the following is true:

a < b, a = b, or b < a.

(G) If a, b, c ∈ F , and a < b, and b < c, then a < c.
(H) If a, b, c ∈ F , and a < b then a+ c < b+ c, and if 0 < c, then ac < bc.
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Solution

In class I gave you the hint that the first part of property (H) would break. We follow up on
this suggestion. Observe that for this field 0 is the additive identity, and 1 is the multiplicative
identity, so 0 6= 1. According to property (F), we are left with two possibilities, either 0 < 1,
or 1 < 0. We will show that both lead to a contradiction.

• Case 1: 0 < 1
Then, by the first part of property (H), 0+1 < 1+1, which implies 1 < 0, a contradiction.

• Case 2: 1 < 0
Then, again by the first part of property (H), 1 + 1 < 0 + 1, which implies 0 < 1, a
contradiction.

This completes the proof.

4. Show that
√
p is irrational if p is prime.

Solution

Use a proof by contradiction. Suppose m,n ∈ Z and √p = m
n in its most reduced form.

Then pn2 = m2, so p divides m2, hence p divides m. Let m = kp, then pn2 = (kp)2, so
n2 = k2p. We conclude that p divides n2. Therefore p divides n, a contradiction.

5. Find the supremum and infimum of each S. State whether they are in S.

a. S =
©
x | x = − (1Án) + [1 + (−1)n]n2, n ∈ Z+ª

Solution
First, we evaluate the elements of S corresponding to n = 1, 2, · · · , 10 and compute their
decimal approximations

−1, 15/2,−1/3, 127/4,−1/5, 431/6,−1/7, 1023/8,−1/9, 1999/10
−1., 7.500,−.3333, 31.75,−.2000, 71.83,−.1429, 127.9,−.1111, 199.9

Notice that the term [1 + (−1)n]n2 vanishes for odd values of n. Therefore, if n is odd
x = − (1Án), which creeps up slowly to zero. If n is even, the n2 term will make the
expression − (1Án) + [1 + (−1)n]n2 increase rapidly. We conclude that inf S = −1.
The set has no upper bound. For convenience we write supS =∞. Note that −1 ∈ S,
while ∞ /∈ S.

b. S =
©
x | x2 < 9ª

Solution
We solve the inequality x2 < 9 for x, and conclude that −3 < x < 3. Hence inf S = −3
and supS = 3, neither of which belong to S.
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d. S = {x | |2x+ 1| < 5}
Solution
Solve the inequality |2x+ 1| < 5, for x by rewriting it as

−5 < 2x+ 1 < 5

Elementary arithmetic shows that −3 < x < 2, so inf S = −3 and supS = 2, neither of
which belong to S.

e. S =
n
x | ¡x2 + 1¢−1 > 1Á2o

Solution
We rewrite the inequality

¡
x2 + 1

¢−1
> 1Á2 as

x2 + 1 < 2

and discover that −1 < x < 1. Therefore inf S = −1 and supS = 1, neither of which
belong to S.

7. a. Show that
inf S ≤ supS

for any nonempty set of real numbers, and give necessary and sufficient conditions for
equality.
Solution
First, let us assume that S is bounded, then inf S and supS are both real numbers.
Since S 6= φ there exist an x ∈ S and

inf S ≤ x ≤ supS

which implies the desired result.
Next, we consider the case that S is unbounded above but still bounded below. Again,
since S 6= φ there exist an x ∈ S and

inf S ≤ x <∞

(x <∞, because x is real). Finally, because S is unbounded above, we decided to write
supS =∞. Therefore

inf S ≤ x <∞ = supS

Hence, in spite of the unboundedness of S, we may still write inf S ≤ supS. The
remaining two cases can be proved in a similar fashion.
Finally, we conjecture that inf S = supS if and only if S has exactly one element.
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• Proof of the if part.
Suppose S = {x}, then inf S = x and supS = x, so inf S = supS.

• Proof of the only if part.
Suppose inf S = supS = γ. Then γ must be real. Because S 6= φ there exist an
x ∈ S and

γ = inf S ≤ x ≤ supS = γ

We conclude that γ is the only element of S.

10. a. Let S and T be nonempty sets of real numbers and define

S + T = {s+ t | s ∈ S, t ∈ T}

Show that

sup (S + T ) = supS + supT

Solution
We will show that sup (S + T ) ≤ supS + supT and sup (S + T ) ≥ supS + supT .
To prove the first inequality, we let u ∈ S + T . Then there exist s ∈ S and t ∈ T such
that u = s+ t, and

u = s+ t ≤ supS + supT

So, supS+supT is an upper bound for S+T and we may conclude that sup (S + T ) ≤
supS + supT .

To prove the second inequality, we choose s ∈ S and t ∈ T . Then s+t ∈ S+T , therefore

s+ t ≤ sup (S + T ) , hence s ≤ sup (S + T )− t

Now think of t ∈ T as being arbitrary but fixed. Then sup (S + T ) − t is an upper
bound of S, so

supS ≤ sup (S + T )− t, hence t ≤ sup (S + T )− supS

These inequalities hold true for all t ∈ T , therefore sup (S + T ) − supS is an upper
bound of T , so

supT ≤ sup (S + T )− supS

which implies sup (S + T ) ≥ supS + supT . This completes the proof.
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1.2 Mathematical Induction

3. Prove by induction.

12 + 32 + · · ·+ (2n− 1)2 = n
¡
4n2 − 1¢
3

Solution

Let Pn denote the proposition
nX
k=1

(2k − 1)2 = n
¡
4n2 − 1¢
3

• We verify that P1 is true.
1X
k=1

(2k − 1)2 = 12 = 1 and 1 (4− 1)
3

=
3

3
= 1

• Assume that Pn is true for some n ∈ N, then
n+1X
k=1

(2k − 1)2 =
nX
k=1

(2k − 1)2 + (2 (n+ 1)− 1)2

=
n
¡
4n2 − 1¢
3

+ (2n+ 1)2 =
n (2n− 1) (2n+ 1)

3
+ (2n+ 1)2

=
1

3
(n (2n− 1) + 3 (2n+ 1)) (2n+ 1) = 1

3

¡
2n2 + 5n+ 3

¢
(2n+ 1)

=
2

3
(n+ 1)

µ
n+

3

2

¶
(2n+ 1) =

1

3
(n+ 1) ((2n+ 3) (2n+ 1))

=
1

3
(n+ 1)

¡
4n2 + 8n+ 3

¢
=
1

3
(n+ 1)

³
4 (n+ 1)2 − 1

´
This shows that Pn+1 is true. Hence, by the principle of mathematical induction, we
may conclude that Pn is true for all n ∈ N.

15. Let a1 = a2 = 5 and
an+1 = an + 6an−1, n ≥ 2

Show by induction that an = 3n − (−2)n if n ≥ 1.
Solution

Let Pn denote the proposition
an = 3

n − (−2)n
.
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• We verify that P1 and P2 are true. Observe that
31 − (−2)1 = 3 + 2 = 5 and 32 − (−2)2 = 9− 4 = 5

• Assume that for some integer n ≥ 2, P1, P2, · · · , Pn are all true. Then
an+1 = an + 6an−1 = 3n − (−2)n + 6

³
3n−1 − (−2)n−1

´
=

µ
1 +

6

3

¶
3n +

µ
−1− 6

−2
¶
(−2)n = 3 · 3n + 2 · (−2)n = 3n+1 − (−2)n+1

This shows that Pn+1 is true.

Hence, by the principle of mathematical induction, we may conclude that Pn is true for all
n ≥ 1.

18. Prove by induction thatZ 1

0
yn (1− y)r dy = n!

(r + 1) (r + 2) · · · (r + n+ 1)
if n is a nonnegative integer and r > −1.
Solution

Let Pn denote the stated proposition.

• We verify that P0 is true.Z 1

0
(1− y)r dy = −

"
(1− y)r+1
r + 1

#1
0

= −
µ
0− 1

r + 1

¶
=

1

r + 1
=

0!

r + 1

• Assume that Pn is true for some nonnegative integer n. As I mentioned in class, you
should use integration by parts to show this implies that Pn+1 is true. In order to be
able to use the induction assumption we differentiate the yn+1 termZ 1

0
yn+1 (1− y)r dy =

"
−y

n+1 (1− y)r+1
r + 1

#1
0

+
n+ 1

r + 1

Z 1

0
yn (1− y)r+1 dy

Observe the integrated term equals zero. Moreover, since r > −1 certainly r+ 1 > −1,
so we may apply the induction assumption to the integral

R 1
0 y

n (1− y)r+1 dy, which
yields Z 1

0
yn+1 (1− y)r dy =

n+ 1

r + 1
· n!

(r + 2) (r + 3) · · · (r + n+ 2)
=

(n+ 1)!

(r + 1) (r + 2) · · · (r + (n+ 1) + 1)
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This shows that Pn+1 is true.

Hence, by the principle of mathematical induction, we may conclude that Pn is true for all
nonnegative integers n.

1.3 The Real Line

1. Find S ∩ T, (S ∩ T )c , Sc ∩ T c, S ∪ T, (S ∪ T )c , and Sc ∪ T c.

a. S = (0, 1) , T =
£
1
2 ,
3
2

¤
• S ∩ T = £12 , 1¢
• (S ∩ T )c = ¡−∞, 12¢ ∪ [1,∞)
• Sc ∩ T c = (S ∪ T )c = ¡¡0, 32¤¢c = (−∞, 0] ∪ ¡32 ,∞¢
• S ∪ T = ¡0, 32¤
• (S ∪ T )c = Sc ∩ T c = (−∞, 0] ∪ ¡32 ,∞¢
• Sc ∪ T c = (S ∩ T )c = ¡−∞, 12¢ ∪ [1,∞) Note: The answer in the back of the book
is not correct.

2. Let Sk =
¡
1− 1

k , 2 +
1
k

¤
, k ≥ 1. Find

a. ∪∞k=1Sk = (0, 3]
b. ∩∞k=1Sk = [1, 2] Note: The answer in the back of the book is not correct.
c. ∪∞k=1Sck = (∩∞k=1Sk)c = ([1, 2])c = (−∞, 1) ∪ (2,∞)
d. ∩∞k=1Sck = (∪∞k=1Sk)c = ((0, 3])c = (−∞, 0] ∪ (3,∞)

3. Prove: If A and B are sets and there is a set X such that A∪X = B∪X and A∩X = B∩X,
then A = B.

Solution

In class I made the remark that you should prove that A∪X = B∪X implies A−X = B−X.
We show that A−X ⊂ B −X. Let s ∈ A−X. Then s ∈ A and s /∈ X, so s ∈ A ∪X and
s /∈ X. Since A∪X = B ∪X this implies that s ∈ B ∪X and s /∈ X. Therefore s ∈ B−X,
hence A −X ⊂ B −X. In a similar fashion we can show that B −X ⊂ A −X. We may
then conclude that A−X = B −X. Finally

A = (A ∩X) ∪ (A−X) = (B ∩X) ∪ (B −X) = B

4. Find the largest ² such that S contains an ²-neighborhood of x0.
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b. x0 = 2
3 , S =

£
1
2 ,
3
2

¤
Solution
² = min

©
2
3 − 1

2 ,
3
2 − 2

3

ª
= 1

6

7. Let F be a collection of sets and define

I = ∩ {F | F ∈ F}

a. Prove that Ic = ∪ {F c | F ∈ F}
Solution

• Part 1: We show that Ic ⊂ ∪ {F c | F ∈ F}
Let s ∈ Ic, then s /∈ I. Hence, there exists an Fs ∈ F such that s /∈ Fs. Then
s ∈ F cs ⊂ ∪ {F c | F ∈ F}. We conclude that Ic ⊂ ∪ {F c | F ∈ F}.

• Part 2: We show that ∪ {F c | F ∈ F} ⊂ Ic
Let s ∈ ∪ {F c | F ∈ F}. Hence, there exists an Fs ∈ F such that s ∈ F cs . Then
s /∈ Fs, so s /∈ ∩ {F | F ∈ F} = I. We conclude that s ∈ Ic and therefore
∪ {F c | F ∈ F} ⊂ Ic.

Together, Part 1 and Part 2 establish the desired result.

8. a. Show that the intersection of finitely many open sets is open.
Solution
For k, n ∈ N, k ≤ n, let Sk denote an open set. We will show that the intersection

I = ∩nk=1Sk

is open.
Let s ∈ I, then s ∈ Sk for k = 1, 2, · · · , n. Since each set Sk is open, there exist ²k > 0
such that the ²k-neighborhood (s− ²k, s+ ²k) is contained in Sk. We define

² = min
1≤k≤n

²k

then
(s− ², s+ ²) ⊂ Sk for 1 ≤ k ≤ n

hence
(s− ², s+ ²) ⊂ ∩nk=1Sk = I

so s is an interior point of I, and because s was chosen arbitrarily in I, this means that
I is open.
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b. Give an example showing that the intersection of infinitely many open sets may fail to
be open.
Solution
Observe ∞\

n=1

µ
− 1
n
, 1 +

1

n

¶
= [0, 1]

15. Prove or disprove: A set has no limit points if and only if each of its points is isolated.

Solution

This statement is not correct. In our discussion of boundary points, we investigated the set

S =

½
1

n
| n ∈ N

¾
The same set also provides a perfect counter example for the proposition above. Observe
that every point of S is an isolated point, yet zero is a limit point of S.

16. a. Prove: If S is bounded above and β = supS, then β ∈ ∂S.
Solution
We must show that every ²-neighborhood N of β contains a point in S and a point not
in S. Let ² > 0 and N = (β − ²,β + ²). Then, since β = supS, there exists a number
x1 ∈ S with β − ² < x1 ≤ β. Moreover, since β is an upper bound of S, the number
x2 = β + 1

2² is not in S. We conclude that β is a boundary point of S.

b. State the analogous result for a set bounded below.
Solution
If S is bounded below and α = inf S, then α ∈ ∂S.

17. Prove: If S is closed and bounded, then inf S and supS are both in S.

Solution

Let α = inf S and β = supS. In class I suggested you use the fact that S is closed if and
only if S = S. We will show that β ∈ S. The argument goes like this. Since S is closed,
S = S, so S = S ∪ ∂S. This means that ∂S is a subset of S. Moreover, by Exercise 16 Part
a, β ∈ ∂S. Hence, β ∈ S. In a similar manner we can prove that α ∈ S.


