Chapter 2

Differential Calculus of Functions of One Variable

2.1 Functions and Limits

- 1. Each of the following conditions fails to define a function on any domain. State why.
 - a. $\sin f(x) = x$ Solution
 - If |x| > 1 this equation has no (real) solution for f(x).
 - If $|x| \leq 1$, each of the values

 $f(x) = \arcsin x + 2n\pi, n \in \mathbb{Z}$ and $f(x) = \pi - \arcsin x + 2n\pi, n \in \mathbb{Z}$

will satisfy the given equation equation. Hence the assigned value f(x) is not unique and therefore f is not a function.

b. $e^{f(x)} = -|x|$

Solution

Since the exponential function $g(x) = e^x$ is strictly positive, the given equation has no solution for any value of x.

c. $1 + x^2 + [f(x)]^2 = 0$

Solution

Since $1 + x^2 + [f(x)]^2 \ge 1$, the given equation has no solution for any value of x. d. $f(x) [f(x) - 1] = x^2$

Solution

This equation is equivalent to $f^{2}(x) - f(x) - x^{2} = 0$. Using the quadratic formula, we obtain

$$f(x) = \frac{1 \pm \sqrt{1 + 4x^2}}{2}$$

Again, the assigned value f(x) is not unique and therefore f is not a function.

3. Find D_f .

a. $f(x) = \tan x$ Solution $D_f = \mathbb{R} - \left\{\frac{\pi}{2} + n\pi \mid n \in \mathbb{Z}\right\}$ d. $f(x) = \frac{\sin x}{x}$ Solution $D_f = \mathbb{R} - \{0\}$ a. $e^{\left[f(x)\right]^2} = x \cdot f(x) > 0$

e.
$$e^{[f(x)]^2} = x, f(x) \ge 0$$

Solution

Since e^{y^2} attains all values greater than or equal to one and none less than one, the given equation has a solution if and only if $x \ge 1$. Hence $D_f = [1, \infty)$. (of course this is commensurate with the equivalent equation $f(x) = \sqrt{\ln x}$)

- 4. Find $\lim_{x\to x_0} f(x)$ and justify your answers with an ϵ - δ proof.
 - a. $\lim_{x \to 1} (x^2 + 2x + 1) = 4$ Solution Let $f(x) = x^2 + 2x + 1, L = 4$, and $\epsilon > 0$. Consider $|f(x) - L| = |(x^2 + 2x + 1) - 4| = |x^2 + 2x - 3| = |x + 3| |x - 1|$

Let $\delta \leq 1$. Then for all x with $0 < |x - 1| < \delta \leq 1$

$$-1 \le x - 1 \le 1$$
, so $3 \le x + 3 \le 5$

Hence,

$$|f(x) - L| = |x + 3| |x - 1| \le 5 |x - 1|$$

Choose $\delta = \min\left\{1, \frac{\epsilon}{5}\right\}$, then for all x with $0 < |x - 1| < \delta$

$$|f(x) - L| \le 5|x - 1| < 5 \cdot \frac{\epsilon}{5} = \epsilon$$

This completes the proof.

2.1. FUNCTIONS AND LIMITS

b. $\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12$ Solution

Let $f(x) = \frac{x^3-8}{x-2}, L = 12$, and $\epsilon > 0$. For $x \neq 2$

$$|f(x) - L| = \left|\frac{x^3 - 8}{x - 2} - 12\right| = \left|x^2 + 2x - 8\right| = |x + 4||x - 2|$$

Let $\delta \leq 1$. Then for all x with $0 < |x - 2| < \delta \leq 1$

$$-1 \le x - 2 \le 1$$
, so $5 \le x + 4 \le 7$

Hence,

$$|f(x) - L| = |x + 4| |x - 2| \le 7 |x - 2|$$

Choose $\delta = \min\left\{1, \frac{\epsilon}{7}\right\}$, then for all x with $0 < |x - 2| < \delta$

$$|f(x) - L| \le 7|x - 2| < 7 \cdot \frac{\epsilon}{7} = \epsilon$$

This completes the proof.

d. $\lim_{x \to 4} \sqrt{x} = 2$

Solution

Let $f(x) = \sqrt{x}, L = 2$, and $\epsilon > 0$. Consider

$$|f(x) - L| = \left|\sqrt{x} - 2\right| = \left|\frac{x - 4}{\sqrt{x} + 2}\right| = \frac{1}{\sqrt{x} + 2}|x - 4| \le \frac{1}{2}|x - 4|$$

Choose $\delta = 2\epsilon$, then for all $x \in D_f$ with $0 < |x - 4| < \delta$

$$|f(x) - L| \le \frac{1}{2}|x - 4| < \frac{1}{2} \cdot 2\epsilon = \epsilon$$

This completes the proof.

- 7. Find $\lim_{x\to x_0-} f(x)$ and $\lim_{x\to x_0+} f(x)$, if they exist. Use ϵ - δ proofs, where applicable, to justify your answers.
 - b. $x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|}, \quad x_0 = 0$ Solution

• $\lim_{x \to 0^-} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|} \right)$ Observe that

$$\lim_{x \to 0^{-}} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|} \right) = \lim_{x \to 0^{-}} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \left(-\frac{1}{x}\right) \right)$$
$$= \lim_{x \to 0^{-}} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} - \sin \frac{1}{x} \right)$$
$$= \lim_{x \to 0^{-}} x \cos \frac{1}{x}$$

Finally, we will now show that $\lim_{x\to 0^-} x \cos \frac{1}{x} = 0$. Let $\epsilon > 0$. Consider

$$\left|x\cos\frac{1}{x} - 0\right| = |x|\left|\cos\frac{1}{x}\right| \le |x|$$

Choose $\delta = \epsilon$, then for all x with $-\delta < x < 0$

$$\left|x\cos\frac{1}{x} - 0\right| \le |x| < \delta = \epsilon$$

We conclude that

$$\lim_{x \to 0^{-}} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|} \right) = \lim_{x \to 0^{-}} x \cos \frac{1}{x} = 0$$

• $\lim_{x\to 0+} \left(x\cos\frac{1}{x} + \sin\frac{1}{x} + \sin\frac{1}{|x|}\right)$

Above we proved that $\lim_{x\to 0^-} x \cos \frac{1}{x} = 0$. In a similar manner it can be shown that $\lim_{x\to 0^+} x \cos \frac{1}{x} = 0$, therefore

$$\lim_{x \to 0+} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|} \right) = \lim_{x \to 0+} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{x} \right)$$
$$= \lim_{x \to 0+} \left(x \cos \frac{1}{x} + 2 \sin \frac{1}{x} \right)$$
$$= \lim_{x \to 0+} x \cos \frac{1}{x} + \lim_{x \to 0+} 2 \sin \frac{1}{x}$$
$$= \lim_{x \to 0+} 2 \sin \frac{1}{x}$$

We now prove that $\lim_{x\to 0^+} 2\sin\frac{1}{x}$ does not exist. Let $L \in \mathbb{R}$, $\delta > 0$ and $\epsilon_0 = \max\{|2-L|, |2+L|\}$. By the Archimedean property of \mathbb{R} , $\exists n \in \mathbb{N}$ such that

$$0 < x_1 = \frac{1}{\frac{\pi}{2} + 2n\pi} < \delta$$
 and $0 < x_2 = \frac{1}{\frac{3\pi}{2} + 2n\pi} < \delta$

2.1. FUNCTIONS AND LIMITS

Note that $\left|2\sin\frac{1}{x_1} - L\right| = |2 - L|$ and $\left|2\sin\frac{1}{x_2} - L\right| = |-2 - L| = |2 + L|$. Hence, for every $L \in \mathbb{R}$, there exists an $\epsilon_0 > 0$ such that for every $\delta > 0$, there exists an x with $0 < x < \delta$, with $\left|2\sin\frac{1}{x} - L\right| \ge \epsilon_0$. This shows that $\lim_{x \to 0^+} 2\sin\frac{1}{x}$ does not exist. Therefore

$$\lim_{x \to 0+} \left(x \cos \frac{1}{x} + \sin \frac{1}{x} + \sin \frac{1}{|x|} \right)$$

does not exist.

c. $\frac{|x-1|}{x^2+x-2}$, $x_0 = 1$ Solution

Use Theorem 2.1.4 adapted for one-sided limits.

- $\lim_{x \to 1-} \frac{|x-1|}{x^2+x-2} = \lim_{x \to 1-} \left(-\frac{x-1}{x^2+x-2} \right) = \lim_{x \to 1-} \left(-\frac{1}{x+2} \right) = -\frac{1}{3}$ • $\lim_{x \to 1+} \frac{|x-1|}{x^2+x-2} = \lim_{x \to 1+} \frac{x-1}{x^2+x-2} = \lim_{x \to 1+} \frac{1}{x+2} = \frac{1}{3}$
- 8. Prove: If $h(x) \ge 0$ for $a < x < x_0$ and $\lim_{x \to x_0^-} h(x)$ exists, then $\lim_{x \to x_0^-} h(x) \ge 0$. Conclude from this that if $f_2(x) \ge f_1(x)$ for $a < x < x_0$, then

$$\lim_{x \to x_0-} f_2(x) \ge \lim_{x \to x_0-} f_1(x)$$

if both limits exist.

Solution

In class I suggested you use a proof by contradiction. The essential ingredient of the proof can be found in the proof of Theorem 2.1.4. Part 4.

Assume $\lim_{x \to x_0-} h(x) = L < 0$. Then $\exists \delta > 0$ such that for all x with $x_0 - \delta < x < x_0$

$$\left|h\left(x\right) - L\right| < \frac{\left|L\right|}{2}$$

This implies that

$$-\frac{\left|L\right|}{2} < h\left(x\right) - L < \frac{\left|L\right|}{2}$$

 \mathbf{SO}

$$-\frac{|L|}{2} < h\left(x\right) + |L| < \frac{|L|}{2} \quad \text{and thus} \quad -\frac{3\,|L|}{2} < h\left(x\right) < -\frac{|L|}{2}$$

a contradiction with the fact that $h(x) \ge 0$ for $a < x < x_0$. Finally, choosing $h(x) = f_2(x) - f_1(x)$ yields

$$\lim_{x \to x_0^-} (f_2(x) - f_1(x)) \ge 0 \text{ and thus } \lim_{x \to x_0^-} f_2(x) \ge \lim_{x \to x_0^-} f_1(x)$$

Provided both limits exist.

- 15. Find $\lim_{x\to\infty} f(x)$ if it exists, and justify your answer directly from Definition 2.1.7.
 - b. $\frac{\sin x}{x^{\alpha}}$ $(\alpha > 0)$

Solution

We will show that $\lim_{x\to\infty} \frac{\sin x}{x^{\alpha}} = 0$. Let $\epsilon > 0$. Observe that

$$\left|\frac{\sin x}{x^{\alpha}} - 0\right| = \frac{|\sin x|}{|x|^{\alpha}} \le \frac{1}{|x|^{\alpha}}$$

Choose $\tau = (1 \swarrow \epsilon)^{1 \swarrow \alpha}$ then for all $x > \tau$

$$\left|\frac{\sin x}{x^{\alpha}} - 0\right| \le \frac{1}{|x|^{\alpha}} < \frac{1}{\tau^{\alpha}} = \frac{1}{\left(\left(1/\epsilon\right)^{1/\alpha}\right)^{\alpha}} = \epsilon$$

This completes the proof.

f. $e^{-x^2}e^{2x}$

Solution

We will show that $\lim_{x\to\infty} \left(e^{-x^2}e^{2x}\right) = 0$. Let $\epsilon > 0$. Observe that for x > 4 $\left|e^{-x^2}e^{2x} - 0\right| = e^{-x^2+2x} = e^{-\frac{1}{2}x^2+2x}e^{-\frac{1}{2}x^2} = e^{-\frac{1}{2}x(x-4)}e^{-\frac{1}{2}x^2} < e^{-\frac{1}{2}x^2}$

• Note that if $\epsilon > 1$, then $e^{-\frac{1}{2}x^2} < \epsilon$. Hence, with $\tau = 4$ and $x > \tau$

$$\left| e^{-x^2} e^{2x} - 0 \right| < e^{-\frac{1}{2}x^2} < \epsilon$$

• In case $0 < \epsilon \leq 1$, we quickly solve the equation

$$e^{-\frac{1}{2}x^2} = \epsilon$$

for x, yielding $x = \sqrt{-2\ln \epsilon}$. Choose $\tau = \max\left\{4, \sqrt{-2\ln \epsilon}\right\}$ then for $x > \tau$

$$\left| e^{-x^2} e^{2x} - 0 \right| < e^{-\frac{1}{2}x^2} < e^{-\frac{1}{2}\tau^2} \le e^{-\frac{1}{2}\left(\sqrt{-2\ln\epsilon}\right)^2} = e^{\ln\epsilon} = \epsilon$$

22. Find

c. $\lim_{x\to x_0} \frac{1}{(x-x_0)^{2k}}$, k is a positive integer. Solution

Observe that in the extended reals

$$\lim_{x \to x_0 -} \frac{1}{(x - x_0)^{2k}} = \infty \quad \text{and} \quad \lim_{x \to x_0 +} \frac{1}{(x - x_0)^{2k}} = \infty$$

2.2. CONTINUITY

 \mathbf{SO}

$$\lim_{x \to x_0} \frac{1}{\left(x - x_0\right)^{2k}} = \infty$$

d. $\lim_{x\to x_0} \frac{1}{(x-x_0)^{2k+1}}$, k is a positive integer. Solution

Observe that in the extended reals

$$\lim_{x \to x_0 -} \frac{1}{(x - x_0)^{2k+1}} = -\infty \quad \text{and} \quad \lim_{x \to x_0 +} \frac{1}{(x - x_0)^{2k+1}} = \infty$$

so, even in the extended reals, the undirected limit

$$\lim_{x \to x_0} \frac{1}{(x - x_0)^{2k + 1}}$$

does not exist.

2.2 Continuity

2. Prove that a function f is continuous at x_0 if and only if

$$\lim_{x \to x_0-} f(x) = \lim_{x \to x_0+} f(x) = f(x_0)$$

Solution

• If:

Let $\epsilon > 0$. Since $\lim_{x \to x_0-} f(x) = f(x_0)$ there exists a $\delta_1 > 0$ such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $x_0 - \delta_1 < x \le x_0$

Similarly, since $\lim_{x\to x_0+} f(x) = f(x_0)$, there exists a $\delta_2 > 0$ such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $x_0 \le x < x_0 + \delta_2$

Choose $\delta = \min{\{\delta_1, \delta_2\}}$, then

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

This shows that f is continuous at x_0 .

• Only if:

Let $\epsilon > 0$. Since f is continuous at x_0 , there exists a $\delta > 0$ such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

This implies that

$$|f(x) - f(x_0)| < \epsilon \text{ whenever } x_0 - \delta < x \le x_0, \text{ and} |f(x) - f(x_0)| < \epsilon \text{ whenever } x_0 \le x < x_0 + \delta$$

Hence $\lim_{x\to x_0-} f(x) = f(x_0)$ and $\lim_{x\to x_0+} f(x) = f(x_0)$.

- 3. Determine whether f is continuous from the left or from the right at x_0 .
 - c. $f(x) = \frac{1}{x}$ $(x_0 = 0)$ Solution

Since f(0) is undefined, the function f is neither continuous from the left at 0, nor continuous from the right at 0.

g.
$$f(x) = \begin{cases} \frac{x+|x|(1+x)}{x} \sin \frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$
 $(x_0 = 0)$

Solution

Observe

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x + |x|(1+x)}{x} \sin \frac{1}{x} = \lim_{x \to 0^{-}} \frac{x - x(1+x)}{x} \sin \frac{1}{x}$$
$$= \lim_{x \to 0^{-}} \left(-x \sin \frac{1}{x} \right) = 0 \neq 1 = f(0)$$

Hence, the function f is not continuous from the left at 0.

Note: The answer in the back of the book is not correct. Similarly

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \frac{x + |x|(1+x)}{x} \sin \frac{1}{x}$$
$$= \lim_{x \to 0+} \frac{x + x(1+x)}{x} \sin \frac{1}{x} = \lim_{x \to 0+} (2+x) \sin \frac{1}{x}$$

This limit is undefined. So, f is not continuous from the right at 0 either.

2.2. CONTINUITY

5. Let

$$g\left(x\right) = \frac{\sqrt{x}}{x-1}$$

On which of the following intervals is f continuous according to definition 2.2.3:

 $[0,1), (0,1), (0,1], [1,\infty), (1,\infty)?$

Solution

- $[0,1), (0,1), \text{ and } (1,\infty).$
- 11. Prove that the function $g(x) = \log x$ is continuous on $(0, \infty)$. Take the following properties as given.
 - (a) $\lim_{x \to 1} g(x) = 0$
 - (b) $g(x_1) + g(x_2) = g(x_1x_2)$ if $x_1, x_2 > 0$.

Solution

Let $\epsilon > 0$ and $x_0 \in (0, \infty)$. In class we showed that property (b) is equivalent to

$$g(x_1) - g(x_2) = g\left(\frac{x_1}{x_2}\right)$$
 if $x_1, x_2 > 0$

Let $x \in (0, \infty)$. Consider

$$\left|g\left(x\right) - g\left(x_{0}\right)\right| = \left|g\left(\frac{x}{x_{0}}\right)\right|$$

Since $\lim_{x\to 1} g(x) = 0$, there exists a $\delta_1 > 0$, such that

$$|g(u)| = |g(u) - 0| = |g(u) - g(1)| < \epsilon$$
 whenever $|u - 1| < \delta_1$

Observe that

$$\left|\frac{x}{x_0} - 1\right| = \left|\frac{x - x_0}{x_0}\right| < \delta_1 \quad \text{whenever} \quad |x - x_0| < \delta_1 |x_0|$$

Choose $\delta = \delta_1 |x_0|$ then, by letting $\frac{x}{x_0}$ play the role of u, we may conclude that

$$|g(x) - g(x_0)| = \left|g\left(\frac{x}{x_0}\right)\right| < \epsilon$$
 whenever $|x - x_0| < \delta$

Therefore g is continuous at x_0 , and since x_0 was chosen arbitrarily on $(0, \infty)$ this shows that g is continuous on $(0, \infty)$.

16. Let |f| be the function whose value at each x in D_f is |f(x)|. Prove: If f is continuous at x_0 , then so is |f|. Is the converse true?

Solution

Let $\epsilon > 0$, then

$$||f|(x) - |f|(x_0)| = ||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)||$$

Moreover, since f is continuous at x_0 , there exists a $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$, so

$$||f|(x) - |f|(x_0)| \le |f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

Hence, the function |f| is continuous at x_0 .

The converse is not true. Consider for instance the function

$$f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Then |f| is continuous at 0, but f is not.

20. (a) Let f_1 and f_2 be continuous at x_0 and define

$$F(x) = \max \{f_1(x), f_2(x)\}$$

Show that F is continuous at x_0 .

Solution

The key idea for this proof is to make a distinction between the case that $f_1(x_0) = f_2(x_0)$, and the case that $f_1(x_0) \neq f_2(x_0)$. Let $\epsilon > 0$.

• Case 1: $f_1(x_0) = f_2(x_0)$ Note that in this case $F(x_0) = \max \{f_1(x_0), f_2(x_0)\} = f_1(x_0) = f_2(x_0)$. Since f_1 is continuous at x_0 , there exists a δ_1 such that

$$|f_1(x) - F(x_0)| = |f_1(x) - f_1(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta_1$

Similarly, since f_2 is continuous at x_0 , there exists a δ_2 such that

$$|f_2(x) - F(x_0)| = |f_2(x) - f_2(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta_2$

Choose $\delta = \min \{\delta_1, \delta_2\}$. Then, because F(x) either equals either $f_1(x)$ or $f_2(x)$,

$$|F(x) - F(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

This shows that F is continuous at x_0 .

2.2. CONTINUITY

• Case 2: $f_1(x_0) \neq f_2(x_0)$ Since f_1 is continuous at x_0 , there exists a δ_1 such that

$$|f_1(x) - f_1(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta_1$

Similarly, since f_2 is continuous at x_0 , there exists a δ_2 such that

$$|f_2(x) - f_2(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta_2$

Choose $\delta = \min \{\delta_1, \delta_2\}$. Without loss of generality, we may assume that $f_1(x_0) > f_2(x_0)$. Take $\epsilon < \frac{f_1(x_0) - f_2(x_0)}{2}$. This assures that whenever $|x - x_0| < \delta$

$$|F(x) - F(x_0)| = |f_1(x) - f_1(x_0)| < \epsilon$$

Again, this shows that F is continuous at x_0 .

(b) Let f_1, f_2, \ldots, f_n be continuous at x_0 and define

$$F(x) = \max \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

Show that F is continuous at x_0 .

Solution

Use mathematical induction. Let P_n denote the proposition mentioned above. Part (a) of this exercise shows that P_2 is true. Let *n* denote any positive integer greater than or equal to 2 and assume that $P_2, P_3, \ldots P_n$ are all true. Let

$$h(x) = \max \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

then h and f_{n+1} are both continuous at x_0 and therefore

$$F(x) = \max \{f_1(x), f_2(x), \dots, f_{n+1}(x)\} = \max \{h(x), f_{n+1}(x)\}$$

is continuous at x_0 . Hence P_{n+1} is true and by the principle of mathematical induction we may conclude that P_n is true for all positive integers greater than or equal to 2.

21. Find the domains of $f \circ g$ and $g \circ f$.

a. $f(x) = \sqrt{x}, g(x) = 1 - x^2$ Solution

 $D_f = [0, \infty)$ and $D_g = (-\infty, \infty)$.

• Let T = [-1, 1]. Then $T \subset D_g$ and $g(x) \in D_f$ whenever $x \in T$. The set T is the domain of $f \circ g$.

- Let $T = [0, \infty)$. Then $T \subset D_f$ and $f(x) \in D_g$ whenever $x \in T$. The set T is the domain of $g \circ f$.
- c. $f(x) = \frac{1}{1-x^2}, g(x) = \cos x$ Solution

 $D_f = \{x \mid x \neq -1, 1\}$ and $D_g = (-\infty, \infty)$.

- Let $T = \{x \mid x \neq n\pi, n \in \mathbb{Z}\}$. Then $T \subset D_g$ and $g(x) \in D_f$ whenever $x \in T$. The set T is the domain of $f \circ g$.
- Let $T = \{x \mid x \neq -1, 1\}$. Then $T \subset D_f$ and $f(x) \in D_g$ whenever $x \in T$. The set T is the domain of $g \circ f$.
- 23. Use Theorem 2.2.7 to find all points x_0 at which the following functions are continuous.

a. $\sqrt{1 - x^2}$

Solution

Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$. Then g is continuous at all real x_0 , while f is continuous at all $x_0 > 0$. We conclude that $f \circ g$ is continuous at all x_0 with $1 - x_0^2 > 0$; that is the set

$$\{x_0 \mid 1 - x_0^2 > 0\} = (-1, 1)$$

g. $(1 - \sin^2 x)^{-1/2}$

Solution

Let $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 1 - \sin^2 x = \cos^2 x$. Then g is continuous at all real x_0 , while f is continuous at all $x_0 > 0$. We conclude that $f \circ g$ is continuous at all x_0 with $\cos^2 x_0 > 0$; that is the set

$$\left\{x_0 \mid \cos^2 x_0 > 0\right\} = \left\{x_0 \mid \cos^2 x_0 \neq 0\right\} = \left\{x_0 \mid x_0 \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$$

Note: The answer in the back of the book is not correct.

24. Complete the proof of Theorem 2.2.9 by showing that there is an $x_2 \in [a, b]$ such that $f(x_2) = \beta$.

Solution

Recall that f is continuous on [a, b] and $\beta = \sup_{x \in [a, b]} f(x) = \sup \{f(x) \mid x \in [a, b]\}$. Suppose there is no $x_2 \in [a, b]$ such that $f(x_2) = \beta$. Then $f(x) < \beta$ for all $x \in [a, b]$. Let $t \in [a, b]$, then $f(t) < \beta$, so

$$f(t) < \frac{f(t) + \beta}{2} < \beta$$

2.3. DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE

Moreover, since f is continuous at t, there exists an open interval I_t containing t, such that

$$f(x) < \frac{f(t) + \beta}{2}$$
 for all $x \in I_t \cap [a, b]$

Note that $\mathcal{H} = \{I_t \mid t \in [a, b]\}$ is an open covering of [a, b], and since [a, b] is compact, \mathcal{H} can be reduced to a finite sub-cover, say

$$\{I_{t_i} \mid 1 \le i \le n\}$$

Let

$$\beta_1 = \max_{1 \le i \le n} \frac{f(t_i) + \beta}{2}$$

Observe that $\beta_1 < \beta$, and

 $f(x) < \beta_1$ for all $x \in [a, b]$

This implies that β_1 is an upper bound for the set $V = \{f(x) \mid x \in [a, b]\}$ which is less than $\beta = \sup V$, a contradiction. We conclude that there must be an $x_2 \in [a, b]$ such that $f(x_2) = \beta$.

2.3 Differentiable Functions of One Variable

3. Use Lemma 2.3.2. to prove that if $f'(x_0) > 0$, there is a $\delta > 0$ such that

$$f(x) < f(x_0)$$
 if $x_0 - \delta < x < x_0$ and $f(x) > f(x_0)$ if $x_0 < x < x_0 + \delta$

Solution

Since $\lim_{x\to x_0} E(x) = 0$, there exists a $\delta > 0$ such that $|E(x)| < f'(x_0)$ whenever $0 < |x - x_0| < \delta$. Therefore, if $0 < |x - x_0| < \delta$,

$$f'(x_0) + E(x) > 0$$

Moreover, since

$$f(x) - f(x_0) = [f'(x_0) + E(x)](x - x_0)$$

the desired result follows.

5. Find all derivatives of $f(x) = x^{n-1} |x|$, where n is a positive integer.

Solution

Recall that

$$\frac{d}{dx}|x| = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0\\ \text{undefined} & \text{if } x = 0 \end{cases}$$

- Using the product rule we find that if $x \neq 0$
 - $f'(x) = (n-1)x^{n-2}|x| + x^{n-1}\frac{|x|}{x} = (n-1)x^{n-2}|x| + x^{n-2}|x| = nx^{n-2}|x|, \text{ and similarly}$

$$- f''(x) = n(n-1)x^{n-3}|x|$$
...

- $f^{(k)}(x) = n(n-1)...(n-k+1)x^{n-k-1}|x|$ for $1 \le k \le n-1$ Observe that the result for $f^{(k)}(x)$ is based on the premise that $f^{(k-1)}(x)$ is of the form $ax^b|x|$ where a and b are positive integers. The $(n-1)^{st}$ derivative of f is no longer of this form

$$f^{(n-1)}(x) = n(n-1)\dots 2|x| = n!|x|$$

Hence, its derivative needs to be examined separately

$$- f^{(n)}(x) = \begin{cases} -n! & \text{if } x < 0\\ n! & \text{if } x > 0 \end{cases}, \text{ and} \\ - f^{(k)}(x) = 0 & \text{if } k > n. \end{cases}$$

• Next we examine $f^{(k)}(0)$. Observe that for integers m

$$\left(\frac{d}{dx}x^m |x|\right)\Big|_{x=0} = \begin{cases} \lim_{x \to 0} \frac{x^m |x| - 0}{x - 0} = \lim_{x \to 0} x^{(m-1)} |x| = 0 & \text{if } m \ge 1\\ \text{undefined} & \text{if } m < 1 \end{cases}$$

• Combining the results for x = 0 and $x \neq 0$ we obtain

$$- f^{(k)}(x) = n (n-1) \dots (n-k+1) x^{n-k-1} |x| \text{ for } 1 \le k \le n-1$$

Note: The answer in the back of the book is not correct

$$- f^{(n)}(x) = \begin{cases} -n! & \text{if } x < 0 \\ \text{undefined if } x = 0 \\ n! & \text{if } x > 0 \end{cases}$$

$$- f^{(k)}(x) = \begin{cases} 0 & \text{if } x \ne 0 \\ \text{undefined if } x = 0 \end{cases} \text{ for } k \ge n+1.$$

10. Prove Theorem 2.3.4 (b).

If f and g are differentiable at x_0 , then so is f - g and

$$(f-g)'(x_0) = f'(x_0) - g'(x_0)$$

Solution

Observe

$$\lim_{x \to x_0} \frac{(f-g)(x) - (f-g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - g(x) - [f(x_0) - g(x_0)]}{x - x_0}$$
$$= \lim_{x \to x_0} \left[\frac{f(x) - f(x_0) - [g(x) - g(x_0)]}{x - x_0} \right]$$
$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$
$$= f'(x_0) - g'(x_0)$$

We conclude that $(f - g)'(x_0)$ exists and equals $f'(x_0) - g'(x_0)$.

11. Prove Theorem 2.3.4 (d).

If f and g are differentiable at x_0 and $g(x_0) \neq 0$, then f/g is differentiable at x_0 and

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{[g(x_0)]^2}$$

Solution

Observe

$$\lim_{x \to x_0} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x)}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{\left[f(x) - f(x_0)\right]g(x_0) - f(x_0)\left[g(x) - g(x_0)\right]}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}g(x_0) - f(x_0)\frac{g(x) - g(x_0)}{x - x_0}}{g(x)g(x_0)}$$

$$= \frac{\left[\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}\right]g(x_0) - f(x_0)\left[\lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}\right]}{[\lim_{x \to x_0} g(x)]g(x_0)}$$

Since g is differentiable at x_0 , g is continuous at x_0 , so $\lim_{x\to x_0} g(x) = g(x_0)$, therefore

$$\lim_{x \to x_0} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(x_0)}{x - x_0} = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{\left[g(x_0)\right]^2}$$

which proves the stated result.

15. a. Show that $f'_{+}(a) = f'(a+)$ if both quantities exist.

Solution

In class I suggested you use the Mean Value Theorem. We will do just that. If f'(a+) exists, then f' exists on some open interval $(a, a + \delta)$. If the right hand derivative $f'_+(a)$ exists, then f is continuous from the right at a. Let $x^* \in (a, a + \delta)$, then f is continuous on $[a, x^*]$ and differentiable on (a, x^*) , so the Mean Value Theorem applies and there exists a $c \in (a, x^*)$ such that

$$\frac{f(x^{*}) - f(a)}{x^{*} - a} = f'(c)$$

This implies

$$f'_{+}(a) = \lim_{x^* \to a_{+}} \frac{f(x^*) - f(a)}{x^* - a} = \lim_{x^* \to a_{+}} f'(c)$$

Finally, note that because $c \in (a, x^*), c \to a + \text{ if } x^* \to a + \text{ and since } \lim_{x \to a+} f'(x)$ exists

$$\lim_{x^* \to a+} f'(c) = \lim_{x \to a+} f'(x) = f'(a+)$$

We conclude that $f'_{+}(a) = f'(a+)$.

b. Example 2.3.4 shows that $f'_{+}(a)$ may exist even if f'(a+) does not. Give an example where f'(a+) exists but $f'_{+}(a)$ does not.

Solution

Take a simple function which is not continuous from the right at a. For instance

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ x & \text{if } x > 0 \end{cases}$$

then

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x - 1}{x}$$
 is undefined

while f'(0+) = 1.

c. Complete the following statement so it becomes a theorem, and prove the theorem: "If f'(a+) exists and f is _____ at a, then $f'_+(a) = f'(a+)$." Solution

"If f'(a+) exists and f is continuous from the right at a, then $f'_+(a) = f'(a+)$." **Proof**

If f'(a+) exists, then f' exists on some open interval $(a, a + \delta)$. Let $x^* \in (a, a + \delta)$, then since f is continuous from the right at a, f is continuous on $[a, x^*]$ and differentiable on (a, x^*) , so the Mean Value Theorem applies and there exists a $c \in (a, x^*)$ such that

$$\frac{f(x^{*}) - f(a)}{x^{*} - a} = f'(c)$$

2.3. DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE

This implies

$$\lim_{x^* \to a^+} \frac{f(x^*) - f(a)}{x^* - a} = \lim_{x^* \to a^+} f'(c)$$

Note that because $c \in (a, x^*)$, $c \to a+$ if $x^* \to a+$ and since $\lim_{x\to a+} f'(x)$ exists

$$\lim_{x^* \to a+} f'(c) = \lim_{x \to a+} f'(x) = f'(a+)$$

We conclude that $f'_{+}(a)$ exists and equals f'(a+).

20. Let n be a positive integer and

$$f(x) = \frac{\sin nx}{n\sin x}, \ x \neq k\pi$$
 (k is integer).

a. Define $f(k\pi)$ such that f is continuous at $k\pi$.

Solution

Let

$$f(k\pi) = \lim_{x \to k\pi} f(x) = \lim_{x \to k\pi} \frac{\sin nx}{n \sin x} = \lim_{x \to k\pi} \frac{n \cos nx}{n \cos x}$$
$$= \lim_{x \to k\pi} \frac{\cos nx}{\cos x} = \frac{\cos nk\pi}{\cos k\pi} = \frac{(-1)^{nk}}{(-1)^k} = (-1)^{(n-1)k}$$

and redefine f as

$$f(x) = \begin{cases} \frac{\sin nx}{n \sin x} & x \neq k\pi, k \in \mathbb{Z} \\ (-1)^{(n-1)k} & x = k\pi, k \in \mathbb{Z} \end{cases}$$

b. Show that if \overline{x} is a local extreme point of f, then

$$\left|f\left(\overline{x}\right)\right| = \left[1 + \left(n^2 - 1\right)\sin^2\overline{x}\right]^{-1/2}$$

HINT: Express $\sin nx$ and $\cos nx$ in terms of f(x) and f'(x), and add their squares to obtain a useful identity.

Solution

First consider the case that $\overline{x} \neq k\pi, k \in \mathbb{Z}$, then $f'(\overline{x}) = 0$. Observe that

$$\sin n\overline{x} = nf\left(\overline{x}\right)\sin\overline{x}$$

and

$$0 = f'(\overline{x}) = \frac{n \cos n\overline{x}}{n \sin \overline{x}} - \frac{\sin n\overline{x} \cos \overline{x}}{n \sin^2 \overline{x}}$$
$$= \frac{\cos n\overline{x}}{\sin \overline{x}} - f(\overline{x}) \frac{\cos \overline{x}}{\sin \overline{x}}$$

hence

$$\cos n\overline{x} = f(\overline{x})\cos \overline{x}$$

therefore

$$1 = \cos^2 n\overline{x} + \sin^2 n\overline{x} = [f(\overline{x})\cos\overline{x}]^2 + [nf(\overline{x})\sin\overline{x}]^2$$
$$= f^2(\overline{x}) \left[\cos^2 \overline{x} + n^2 \sin^2 \overline{x}\right] = f^2(\overline{x}) \left[1 + (n^2 - 1)\sin^2 \overline{x}\right]$$

which implies that

$$|f(\overline{x})| = \left[1 + \left(n^2 - 1\right)\sin^2\overline{x}\right]^{-1/2}$$

Moreover, if $k \in \mathbb{Z}$, $|f(k\pi)| = \left| (-1)^{(n-1)k} \right| = 1$, so the formula

$$|f(\overline{x})| = \left[1 + \left(n^2 - 1\right)\sin^2\overline{x}\right]^{-1/2}$$

is true even if $\overline{x} = k\pi, k \in \mathbb{Z}$.

c. Show that $|f(x)| \leq 1$ for all x. For what values of x is equality attained?

Solution

For integer k, let I denote the closed and bounded interval $[(k-1)\pi, k\pi]$. Then f is continuous on I and by the Extreme Value Theorem f must have a minimum m and a maximum M on I. Therefore there exists a local extreme point \overline{x} on I such that $m = f(\overline{x})$. Hence, by the result of Part (b) $|m| = |f(\overline{x})| \le 1$. In a similar fashion we can prove that $|M| \le 1$. This means that for all x in I

$$-1 \le -|m| \le m \le f(x) \le M \le |M| \le 1$$

 \mathbf{SO}

$$|f(x)| \leq 1$$
 for all x in I .

Because k was an arbitrary integer this implies that $|f(x)| \leq 1$ for all real x. If n = 1 equality is attained for all $x \in \mathbb{R}$, and if n > 1 equality is attained for $x = k\pi, k \in \mathbb{Z}$.

2.4 L'Hospital's Rule

In Exercises 2 - 40, find the indicated limits.

6. $\lim_{x \to 0} \frac{\log(1+x)}{x}$

Solution

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = 1$$

2.5. TAYLOR'S THEOREM

7. $\lim_{x\to\infty} e^x \sin e^{-x^2}$

Solution

$$\lim_{x \to \infty} e^x \sin e^{-x^2} = \lim_{x \to \infty} \frac{\sin e^{-x^2}}{e^{-x}} = \lim_{x \to \infty} \frac{-2xe^{-x^2} \cos e^{-x^2}}{-e^{-x}}$$
$$= \lim_{x \to \infty} \frac{2x}{e^{x^2 - x}} = \lim_{x \to \infty} \frac{2}{(2x - 1)e^{x^2 - x}}$$
$$= \lim_{x \to \infty} \frac{2}{(2x - 1)e^{x(x - 1)}} = 0$$

20. $\lim_{x\to 0} (1+x)^{1/x}$

Solution

$$\lim_{x \to 0} (1+x)^{1/x} = e^{\lim_{x \to 0} \frac{\log(1+x)}{x}} = e^{\lim_{x \to 0} \frac{1}{1+x}} = e^1 = e^1$$

23. $\lim_{x\to 0+} x^{\alpha} \log x$

Solution

Observe that if $\alpha \leq 0$, $\lim_{x\to 0+} x^{\alpha} \log x = -\infty$. When $\alpha > 0$, then

$$\lim_{x \to 0+} x^{\alpha} \log x = \lim_{x \to 0+} \frac{\log x}{x^{-\alpha}} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\alpha x^{-\alpha - 1}} = \lim_{x \to 0+} -\frac{1}{\alpha} x^{\alpha} = 0$$

26. $\lim_{x \to 1+} \left(\frac{x+1}{x-1}\right)^{\sqrt{x^2-1}}$

Solution

$$\lim_{x \to 1+} \left(\frac{x+1}{x-1}\right)^{\sqrt{x^2-1}} = e^{\lim_{x \to 1+} \left[\sqrt{x^2-1}\log\left(\frac{x+1}{x-1}\right)\right]}$$

$$= e^{\lim_{x \to 1+} \left[\sqrt{x+1}\sqrt{x-1}\log(x+1) - \log(x-1)\right]}$$

$$= e^{\lim_{x \to 1+} \left[\sqrt{x+1}\sqrt{x-1}\log(x+1) - \sqrt{x+1}\sqrt{x-1}\log(x-1)\right]}$$

$$= e^{\lim_{x \to 1+} \left[-\sqrt{2}\sqrt{x-1}\log(x-1)\right]} = e^{\lim_{x \to 1+} \left[-\sqrt{2}\frac{\log(x-1)}{(x-1)^{-1/2}}\right]}$$

$$= e^{\lim_{x \to 1+} \left[2\sqrt{2}\frac{1}{x-1}(x-1)^{-3/2}\right]} = e^{\lim_{x \to 1+} \left[2\sqrt{2}\sqrt{x-1}\right]} = 1$$

2.5 Taylor's Theorem

2. Suppose $f^{(n+1)}(x_0)$ exists, and let T_n be the n^{th} Taylor polynomial of f about x_0 . Show that the function

$$E_n(x) = \begin{cases} \frac{f(x) - T_n(x)}{(x - x_0)^n} & \text{if } x \in D_f - \{x_0\} \\ 0 & \text{if } x = 0 \end{cases}$$

Is differentiable at x_0 and find $E'_n(x_0)$.

Solution

Observe

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{E_n(x) - 0}{x - x_0} = \lim_{x \to x_0} \frac{\frac{f(x) - T_n(x)}{(x - x_0)^n}}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^{n+1}}$$

Let $T_{n+1}(x)$ denote the $(n+1)^{st}$ Taylor polynomial of f about x_0 . Then

$$\lim_{x \to x_0} \frac{E_n(x) - E_n(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^{n+1}}$$
$$= \lim_{x \to x_0} \frac{f(x) - T_{n+1}(x)}{(x - x_0)^{n+1}} + \lim_{x \to x_0} \frac{T_{n+1}(x) - T_n(x)}{(x - x_0)^{n+1}}$$
$$= 0 + \lim_{x \to x_0} \left[\frac{1}{(x - x_0)^{n+1}} \left\{ \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} \right\} \right]$$
$$= \frac{f^{(n+1)}(x_0)}{(n+1)!}$$

We conclude that

$$E'_{n}(x_{0}) = \frac{f^{(n+1)}(x_{0})}{(n+1)!}$$

4. a. Prove: if $f''(x_0)$ exists, then

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0)$$

Solution

Since $f''(x_0)$ exists, the second Taylor polynomial T_2 of f about x_0 is defined. We will compare $f(x_0 + h)$ to $T_2(x_0 + h)$, and $f(x_0 + h)$ to $T_2(x_0 + h)$. Recall

$$\lim_{x \to x_0} \frac{f(x) - T_2(x)}{(x - x_0)^2} = 0$$

If in this result x is replaced by $x_0 + h$ we obtain

$$\lim_{h \to 0} \frac{f(x_0 + h) - T_2(x_0 + h)}{h^2} = 0$$

2.5. TAYLOR'S THEOREM

and similarly

$$\lim_{h \to 0} \frac{f(x_0 - h) - T_2(x_0 - h)}{h^2} = 0$$

Now observe

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - T_2(x_0 + h)}{h^2} + \lim_{h \to 0} \frac{T_2(x_0 + h) - 2f(x_0) + T_2(x_0 - h)}{h^2}$$

$$+ \lim_{h \to 0} \frac{f(x_0 - h) - T_2(x_0 - h)}{h^2}$$

$$= \lim_{h \to 0} \frac{T_2(x_0 + h) - 2f(x_0) + T_2(x_0 - h)}{h^2}$$

$$= \lim_{h \to 0} \left[\frac{f(x_0) + f'(x_0)h + 1/2f''(x_0)h^2}{h^2} - \frac{2f(x_0)}{h^2} \right]$$

$$= \lim_{h \to 0} \frac{f''(x_0)h^2}{h^2} = \lim_{h \to 0} f''(x_0) = f''(x_0)$$

b. Prove or give a counter example: If the limit in Part a exists, then so does $f''(x_0)$ and they are equal.

Solution

Notice that the proof of Part a is based on the assumption that $f''(x_0)$ exists. Without that assumption T_2 is undefined and the proof falls apart. To generate a counterexample for the given statement we will look for a function f that quadratically approaches $f(x_0)$ as x approaches x_0 and for which $f''(x_0)$ is undefined. With $x_0 = 0$, the function f(x) = x |x| satisfies those requirements. We now verify that this function truly is a counterexample.

•
$$f'(0) = \lim_{x \to 0} \frac{x|x|-0}{x} = \lim_{x \to 0} |x| = 0$$
, and if $x \neq 0$, $f'(x) = |x| + \frac{x|x|}{x} = 2|x|$. So
$$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{2|x|}{x}$$
 is undefined

Therefore f''(0) is undefined.

• Observe

$$\lim_{h \to 0} \frac{f(h) - 2f(0) + f(-h)}{h^2}$$

=
$$\lim_{h \to 0} \frac{h|h| - h|-h|}{h^2} = \lim_{h \to 0} \frac{0}{h^2} = \lim_{h \to 0} 0 = 0$$

This means that with $x_0 = 0$, $\lim_{h \to 0} \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2} = 0$.

8. a. Let

$$h(x) = \sum_{r=0}^{n} \alpha_r (x - x_0)^r$$

be a polynomial of degree $\leq n$ such that

$$\lim_{x \to x_0} \frac{h(x)}{\left(x - x_0\right)^n} = 0$$

Show that $\alpha_r = 0$ for $0 \le r \le n$.

Solution

We use induction on n. Let P_n denote the proposition above.

• First we verify that P_0 is true. Note that if n = 0, then $h(x) = \alpha_0$ and $(x - x_0)^n = 1$, so

$$\lim_{x \to x_0} \alpha_0 = 0$$

Hence, $\alpha_0 = 0$.

• Let k denote a nonnegative integer and let P_k be true. Additionally let

$$h(x) = \sum_{r=0}^{k+1} \alpha_r (x - x_0)^r$$
 and $\lim_{x \to x_0} \frac{h(x)}{(x - x_0)^{k+1}} = 0$

Then

$$\lim_{x \to x_0} h(x) = \lim_{x \to x_0} \left[\frac{h(x)}{(x - x_0)^{k+1}} (x - x_0)^{k+1} \right] = 0 \cdot 0 = 0$$

and since h is a polynomial it is continuous everywhere, so

$$h(x_0) = \lim_{x \to x_0} h(x) = 0$$

which means $\alpha_0 = 0$. Thus, with m = r - 1

$$h(x) = \sum_{r=1}^{k+1} \alpha_r (x - x_0)^r = \sum_{m=0}^k \alpha_{m+1} (x - x_0)^{m+1}$$

and

$$0 = \lim_{x \to x_0} \frac{h(x)}{(x - x_0)^{k+1}} = \lim_{x \to x_0} \frac{\sum_{m=0}^k \alpha_{m+1} (x - x_0)^{m+1}}{(x - x_0)^{k+1}}$$
$$= \lim_{x \to x_0} \frac{\sum_{m=0}^k \alpha_{m+1} (x - x_0)^m}{(x - x_0)^k}$$

2.5. TAYLOR'S THEOREM

Observe that the numerator in the last expression is a polynomial of degree $\leq k$, so the induction assumption applies and we may conclude that in addition to the fact that $\alpha_0 = 0$, also $\alpha_r = 0$ for $1 \leq r \leq k + 1$. Hence P_{k+1} is true. This completes the proof.

b. Suppose f is n times differentiable at x_0 and $p = \sum_{r=0}^{n} \alpha_r (x - x_0)^r$ is a polynomial of degree $\leq n$ such that

$$\lim_{x \to x_0} \frac{f(x) - p(x)}{(x - x_0)^n} = 0$$

Show that

$$\alpha_r = \frac{f^{(r)}(x_0)}{r!} \quad \text{if} \quad 0 \le r \le n$$

that is, $p = T_n$. the n^{th} Taylor polynomial of f about x_0 . Solution

Observe

$$0 = \lim_{x \to x_0} \frac{f(x) - p(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} + \lim_{x \to x_0} \frac{T_n(x) - p(x)}{(x - x_0)^n}$$
$$= 0 + \lim_{x \to x_0} \frac{T_n(x) - p(x)}{(x - x_0)^n}$$

we conclude that

$$\lim_{x \to x_0} \frac{T_n(x) - p(x)}{(x - x_0)^n} = 0$$

and by Part a, this implies that $T_n(x) - p(x)$ is identically equal to zero, so $p = T_n$. 16. Find an upper bound for the magnitude of the error in the approximation.

b. $\sqrt{1+x} \approx 1 + \frac{x}{2}, |x| < \frac{1}{8}$

Solution

Let $f(x) = \sqrt{1+x}$, then use Taylor's theorem with n = 1 and $x_0 = 0$.

$$\sqrt{1+x} - \left[1 + \frac{x}{2}\right] = \frac{f^{(2)}(c)}{2!}x^2$$

 \mathbf{SO}

$$\left|\sqrt{1+x} - \left[1 + \frac{x}{2}\right]\right| = \left|\frac{f^{(2)}(c)}{2!}x^2\right| \le \frac{1}{2}\left(\frac{1}{8}\right)^2 \left|f^{(2)}(c)\right| = \frac{1}{128} \left|f^{(2)}(c)\right|$$

Next we estimate $|f^{(2)}(c)| = \frac{1}{4(c+1)^{3/2}}$ for $|c| < \frac{1}{8}$. Observe

$$\left| f^{(2)}(c) \right| = \frac{1}{4(c+1)^{3/2}} \le \frac{1}{4\left(-\frac{1}{8}+1\right)^{3/2}} = \frac{4}{49}\sqrt{14}$$

Hence, an upper bound for the magnitude of the error is given by

$$\frac{1}{128} \cdot \frac{4}{49}\sqrt{14} = \frac{1}{1568}\sqrt{14} \approx 2.3863 \times 10^{-3}$$

Note: The answer in the back of the book is not correct.

d. $\log x \approx (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}, |x-1| < \frac{1}{64}$ Solution

Let $f(x) = \log x$, then use Taylor's theorem with n = 3 and $x_0 = 1$.

$$\log x - \left[(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} \right] = \frac{f^{(4)}(c)}{4!} (x-1)^4$$

 \mathbf{SO}

$$\left| \log x - \left[(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} \right] \right|$$

= $\left| \frac{f^{(4)}(c)}{4!} (x-1)^4 \right| \le \frac{1}{24} \left(\frac{1}{64} \right)^4 \left| f^{(4)}(c) \right| = \frac{1}{402\,653\,184} \left| f^{(4)}(c) \right|$

Next we estimate $|f^{(4)}(c)| = \frac{6}{c^4}$ for $|c-1| < \frac{1}{64}$. Observe

$$\left| f^{(4)}(c) \right| = \frac{6}{c^4} \le \frac{6}{\left(1 - \frac{1}{64}\right)^4} = \frac{33\,554\,432}{5250\,987}$$

Hence, an upper bound for the magnitude of the error is given by

$$\frac{1}{402\,653\,184} \cdot \frac{33\,554\,432}{5250\,987} = \frac{1}{63\,011\,844} \approx 1.587 \times 10^{-8}$$