
Chapter 2

Differential Calculus of Functions of
One Variable

2.1 Functions and Limits

1. Each of the following conditions fails to define a function on any domain. State why.

a. sin f (x) = x

Solution

• If |x| > 1 this equation has no (real) solution for f (x).
• If |x| ≤ 1, each of the values

f (x) = arcsinx+ 2nπ, n ∈ Z and f (x) = π − arcsinx+ 2nπ, n ∈ Z

will satisfy the given equation equation. Hence the assigned value f (x) is not
unique and therefore f is not a function.

b. ef(x) = − |x|
Solution
Since the exponential function g (x) = ex is strictly positive, the given equation has no
solution for any value of x.

c. 1 + x2 + [f (x)]2 = 0

Solution
Since 1 + x2 + [f (x)]2 ≥ 1, the given equation has no solution for any value of x.

d. f (x) [f (x)− 1] = x2

Solution

11
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This equation is equivalent to f2 (x)− f (x)− x2 = 0. Using the quadratic formula, we
obtain

f (x) =
1±
√
1 + 4x2

2

Again, the assigned value f (x) is not unique and therefore f is not a function.

3. Find Df .

a. f (x) = tanx
Solution
Df = R−

©
π
2 + nπ | n ∈ Z

ª
d. f (x) = sinx

x

Solution
Df = R− {0}

e. e[f(x)]
2
= x, f (x) ≥ 0

Solution
Since ey

2
attains all values greater than or equal to one and none less than one, the

given equation has a solution if and only if x ≥ 1. Hence Df = [1,∞). (of course this
is commensurate with the equivalent equation f (x) =

√
lnx)

4. Find limx→x0 f (x) and justify your answers with an �-δ proof.

a. limx→1
¡
x2 + 2x+ 1

¢
= 4

Solution
Let f (x) = x2 + 2x+ 1, L = 4, and � > 0. Consider

|f (x)− L| =
¯̄¡
x2 + 2x+ 1

¢
− 4
¯̄
=
¯̄
x2 + 2x− 3

¯̄
= |x+ 3| |x− 1|

Let δ ≤ 1. Then for all x with 0 < |x− 1| < δ ≤ 1

−1 ≤ x− 1 ≤ 1, so 3 ≤ x+ 3 ≤ 5

Hence,
|f (x)− L| = |x+ 3| |x− 1| ≤ 5 |x− 1|

Choose δ = min
©
1, �5

ª
, then for all x with 0 < |x− 1| < δ

|f (x)− L| ≤ 5 |x− 1| < 5 · �
5
= �

This completes the proof.
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b. limx→2
x3−8
x−2 = limx→2

(x−2)(x2+2x+4)
x−2 = limx→2

¡
x2 + 2x+ 4

¢
= 12

Solution
Let f (x) = x3−8

x−2 , L = 12, and � > 0. For x 6= 2

|f (x)− L| =
¯̄̄̄
x3 − 8
x− 2 − 12

¯̄̄̄
=
¯̄
x2 + 2x− 8

¯̄
= |x+ 4| |x− 2|

Let δ ≤ 1. Then for all x with 0 < |x− 2| < δ ≤ 1

−1 ≤ x− 2 ≤ 1, so 5 ≤ x+ 4 ≤ 7

Hence,
|f (x)− L| = |x+ 4| |x− 2| ≤ 7 |x− 2|

Choose δ = min
©
1, �7

ª
, then for all x with 0 < |x− 2| < δ

|f (x)− L| ≤ 7 |x− 2| < 7 · �
7
= �

This completes the proof.

d. limx→4
√
x = 2

Solution
Let f (x) =

√
x,L = 2, and � > 0. Consider

|f (x)− L| =
¯̄√

x− 2
¯̄
=

¯̄̄̄
x− 4√
x+ 2

¯̄̄̄
=

1√
x+ 2

|x− 4| ≤ 1
2
|x− 4|

Choose δ = 2�, then for all x ∈ Df with 0 < |x− 4| < δ

|f (x)− L| ≤ 1
2
|x− 4| < 1

2
· 2� = �

This completes the proof.

7. Find limx→x0− f (x) and limx→x0+ f (x), if they exist. Use �-δ proofs, where applicable, to
justify your answers.

b. x cos 1x + sin
1
x + sin

1
|x| , x0 = 0

Solution
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• limx→0−
³
x cos 1x + sin

1
x + sin

1
|x|

´
Observe that

lim
x→0−

µ
x cos

1

x
+ sin

1

x
+ sin

1

|x|

¶
= lim

x→0−

µ
x cos

1

x
+ sin

1

x
+ sin

µ
−1
x

¶¶
= lim

x→0−

µ
x cos

1

x
+ sin

1

x
− sin 1

x

¶
= lim

x→0−
x cos

1

x

Finally, we will now show that limx→0− x cos
1
x = 0. Let � > 0. Consider¯̄̄̄

x cos
1

x
− 0
¯̄̄̄
= |x|

¯̄̄̄
cos

1

x

¯̄̄̄
≤ |x|

Choose δ = �, then for all x with −δ < x < 0¯̄̄̄
x cos

1

x
− 0
¯̄̄̄
≤ |x| < δ = �

We conclude that

lim
x→0−

µ
x cos

1

x
+ sin

1

x
+ sin

1

|x|

¶
= lim

x→0−
x cos

1

x
= 0

• limx→0+
³
x cos 1x + sin

1
x + sin

1
|x|

´
Above we proved that limx→0− x cos

1
x = 0. In a similar manner it can be shown

that limx→0+ x cos
1
x = 0, therefore

lim
x→0+

µ
x cos

1

x
+ sin

1

x
+ sin

1

|x|

¶
= lim

x→0+

µ
x cos

1

x
+ sin

1

x
+ sin

1

x

¶
= lim

x→0+

µ
x cos

1

x
+ 2 sin

1

x

¶
= lim

x→0+
x cos

1

x
+ lim

x→0+
2 sin

1

x

= lim
x→0+

2 sin
1

x

We now prove that limx→0+ 2 sin
1
x does not exist. Let L ∈ R, δ > 0 and �0 =

max {|2− L| , |2 + L|}. By the Archimedean property of R, ∃n ∈ N such that

0 < x1 =
1

π
2 + 2nπ

< δ and 0 < x2 =
1

3π
2 + 2nπ

< δ
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Note that
¯̄̄
2 sin 1

x1
− L

¯̄̄
= |2− L| and

¯̄̄
2 sin 1

x2
− L

¯̄̄
= |−2− L| = |2 + L|. Hence,

for every L ∈ R, there exists an �0 > 0 such that for every δ > 0, there exists an x
with 0 < x < δ, with

¯̄
2 sin 1x − L

¯̄
≥ �0. This shows that limx→0+ 2 sin

1
x does not

exist. Therefore

lim
x→0+

µ
x cos

1

x
+ sin

1

x
+ sin

1

|x|

¶
does not exist.

c. |x−1|
x2+x−2 , x0 = 1

Solution
Use Theorem 2.1.4 adapted for one-sided limits.

• limx→1−
|x−1|

x2+x−2 = limx→1−
³
− x−1

x2+x−2

´
= limx→1−

³
− 1

x+2

´
= −13

• limx→1+
|x−1|

x2+x−2 = limx→1+
x−1

x2+x−2 = limx→1+
1

x+2 =
1
3

8. Prove: If h (x) ≥ 0 for a < x < x0 and limx→x0− h (x) exists, then limx→x0− h (x) ≥ 0.
Conclude from this that if f2 (x) ≥ f1 (x) for a < x < x0, then

lim
x→x0−

f2 (x) ≥ lim
x→x0−

f1 (x)

if both limits exist.

Solution

In class I suggested you use a proof by contradiction. The essential ingredient of the proof
can be found in the proof of Theorem 2.1.4. Part 4.

Assume limx→x0− h (x) = L < 0. Then ∃δ > 0 such that for all x with x0 − δ < x < x0

|h (x)− L| < |L|
2

This implies that

− |L|
2

< h (x)− L <
|L|
2

so

− |L|
2

< h (x) + |L| < |L|
2

and thus − 3 |L|
2

< h (x) < − |L|
2

a contradiction with the fact that h (x) ≥ 0 for a < x < x0.

Finally, choosing h (x) = f2 (x)− f1 (x) yields

lim
x→x0−

(f2 (x)− f1 (x)) ≥ 0 and thus lim
x→x0−

f2 (x) ≥ lim
x→x0−

f1 (x)

Provided both limits exist.
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15. Find limx→∞ f (x) if it exists, and justify your answer directly from Definition 2.1.7.

b. sinx
xα (α > 0)

Solution
We will show that limx→∞

sinx
xα = 0. Let � > 0. Observe that¯̄̄̄
sinx

xα
− 0
¯̄̄̄
=
|sinx|
|x|α ≤

1

|x|α

Choose τ = (1Á�)1Áα then for all x > τ¯̄̄̄
sinx

xα
− 0
¯̄̄̄
≤ 1

|x|α <
1

τα
=

1³
(1Á�)1Áα

´α = �

This completes the proof.

f. e−x
2
e2x

Solution
We will show that limx→∞

³
e−x

2
e2x
´
= 0. Let � > 0. Observe that for x > 4¯̄̄

e−x
2
e2x − 0

¯̄̄
= e−x

2+2x = e−
1
2
x2+2xe−

1
2
x2 = e−

1
2
x(x−4)e−

1
2
x2 < e−

1
2
x2

• Note that if � > 1, then e−
1
2
x2 < �. Hence, with τ = 4 and x > τ¯̄̄
e−x

2
e2x − 0

¯̄̄
< e−

1
2
x2 < �

• In case 0 < � ≤ 1, we quickly solve the equation

e−
1
2
x2 = �

for x, yielding x =
√
−2 ln �. Choose τ = max

©
4,
√
−2 ln �

ª
then for x > τ¯̄̄

e−x
2
e2x − 0

¯̄̄
< e−

1
2
x2 < e−

1
2
τ2 ≤ e−

1
2(
√
−2 ln �)2 = eln � = �

22. Find

c. limx→x0
1

(x−x0)2k
, k is a positive integer.

Solution
Observe that in the extended reals

lim
x→x0−

1

(x− x0)
2k
=∞ and lim

x→x0+

1

(x− x0)
2k
=∞
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so

lim
x→x0

1

(x− x0)
2k
=∞

d. limx→x0
1

(x−x0)2k+1
, k is a positive integer.

Solution
Observe that in the extended reals

lim
x→x0−

1

(x− x0)
2k+1

= −∞ and lim
x→x0+

1

(x− x0)
2k+1

=∞

so, even in the extended reals, the undirected limit

lim
x→x0

1

(x− x0)
2k+1

does not exist.

2.2 Continuity

2. Prove that a function f is continuous at x0 if and only if

lim
x→x0−

f (x) = lim
x→x0+

f (x) = f (x0)

Solution

• If:
Let � > 0. Since limx→x0− f (x) = f (x0) there exists a δ1 > 0 such that

|f (x)− f (x0)| < � whenever x0 − δ1 < x ≤ x0

Similarly, since limx→x0+ f (x) = f (x0), there exists a δ2 > 0 such that

|f (x)− f (x0)| < � whenever x0 ≤ x < x0 + δ2

Choose δ = min {δ1, δ2}, then

|f (x)− f (x0)| < � whenever |x− x0| < δ

This shows that f is continuous at x0.
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• Only if:
Let � > 0. Since f is continuous at x0, there exists a δ > 0 such that

|f (x)− f (x0)| < � whenever |x− x0| < δ

This implies that

|f (x)− f (x0)| < � whenever x0 − δ < x ≤ x0, and

|f (x)− f (x0)| < � whenever x0 ≤ x < x0 + δ

Hence limx→x0− f (x) = f (x0) and limx→x0+ f (x) = f (x0).

3. Determine whether f is continuous from the left or from the right at x0.

c. f (x) = 1
x (x0 = 0)

Solution
Since f (0) is undefined, the function f is neither continuous from the left at 0, nor
continuous from the right at 0.

g. f (x) =
½

x+|x|(1+x)
x sin 1x x 6= 0

1 x = 0
(x0 = 0)

Solution
Observe

lim
x→0−

f (x) = lim
x→0−

x+ |x| (1 + x)

x
sin

1

x
= lim

x→0−
x− x (1 + x)

x
sin

1

x

= lim
x→0−

µ
−x sin 1

x

¶
= 0 6= 1 = f (0)

Hence, the function f is not continuous from the left at 0.

Note: The answer in the back of the book is not correct.
Similarly

lim
x→0+

f (x) = lim
x→0+

x+ |x| (1 + x)

x
sin

1

x

= lim
x→0+

x+ x (1 + x)

x
sin

1

x
= lim

x→0+
(2 + x) sin

1

x

This limit is undefined. So, f is not continuous from the right at 0 either.
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5. Let

g (x) =

√
x

x− 1

On which of the following intervals is f continuous according to definition 2.2.3:

[0, 1) , (0, 1) , (0, 1] , [1,∞) , (1,∞)?
Solution

[0, 1) , (0, 1) , and (1,∞).

11. Prove that the function g (x) = log x is continuous on (0,∞). Take the following properties
as given.

(a) limx→1 g (x) = 0

(b) g (x1) + g (x2) = g (x1x2) if x1, x2 > 0.

Solution

Let � > 0 and x0 ∈ (0,∞). In class we showed that property (b) is equivalent to

g (x1)− g (x2) = g

µ
x1
x2

¶
if x1, x2 > 0

Let x ∈ (0,∞). Consider

|g (x)− g (x0)| =
¯̄̄̄
g

µ
x

x0

¶¯̄̄̄
Since limx→1 g (x) = 0, there exists a δ1 > 0, such that

|g (u)| = |g (u)− 0| = |g (u)− g (1)| < � whenever |u− 1| < δ1

Observe that ¯̄̄̄
x

x0
− 1
¯̄̄̄
=

¯̄̄̄
x− x0
x0

¯̄̄̄
< δ1 whenever |x− x0| < δ1 |x0|

Choose δ = δ1 |x0| then, by letting x
x0
play the role of u, we may conclude that

|g (x)− g (x0)| =
¯̄̄̄
g

µ
x

x0

¶¯̄̄̄
< � whenever |x− x0| < δ

Therefore g is continuous at x0, and since x0 was chosen arbitrarily on (0,∞) this shows that
g is continuous on (0,∞).
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16. Let |f | be the function whose value at each x in Df is |f (x)|. Prove: If f is continuous at
x0, then so is |f |. Is the converse true?
Solution

Let � > 0, then

||f | (x)− |f | (x0)| = ||f (x)|− |f (x0)|| ≤ |f (x)− f (x0)|

Moreover, since f is continuous at x0, there exists a δ > 0 such that |f (x)− f (x0)| < �
whenever |x− x0| < δ, so

||f | (x)− |f | (x0)| ≤ |f (x)− f (x0)| < � whenever |x− x0| < δ

Hence, the function |f | is continuous at x0.
The converse is not true. Consider for instance the function

f (x) =

½ |x|
x if x 6= 0
1 if x = 0

Then |f | is continuous at 0, but f is not.

20. (a) Let f1 and f2 be continuous at x0 and define

F (x) = max {f1 (x) , f2 (x)}

Show that F is continuous at x0.
Solution
The key idea for this proof is to make a distinction between the case that f1 (x0) =
f2 (x0), and the case that f1 (x0) 6= f2 (x0). Let � > 0.

• Case 1: f1 (x0) = f2 (x0)
Note that in this case F (x0) = max {f1 (x0) , f2 (x0)} = f1 (x0) = f2 (x0). Since f1
is continuous at x0, there exists a δ1 such that

|f1 (x)− F (x0)| = |f1 (x)− f1 (x0)| < � whenever |x− x0| < δ1

Similarly, since f2 is continuous at x0, there exists a δ2 such that

|f2 (x)− F (x0)| = |f2 (x)− f2 (x0)| < � whenever |x− x0| < δ2

Choose δ = min {δ1, δ2}. Then, because F (x) either equals either f1 (x) or f2 (x),

|F (x)− F (x0)| < � whenever |x− x0| < δ

This shows that F is continuous at x0.
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• Case 2: f1 (x0) 6= f2 (x0)
Since f1 is continuous at x0, there exists a δ1 such that

|f1 (x)− f1 (x0)| < � whenever |x− x0| < δ1

Similarly, since f2 is continuous at x0, there exists a δ2 such that

|f2 (x)− f2 (x0)| < � whenever |x− x0| < δ2

Choose δ = min {δ1, δ2}. Without loss of generality, we may assume that f1 (x0) >
f2 (x0). Take � <

f1(x0)−f2(x0)
2 . This assures that whenever |x− x0| < δ

|F (x)− F (x0)| = |f1 (x)− f1 (x0)| < �

Again, this shows that F is continuous at x0.

(b) Let f1, f2, . . . , fn be continuous at x0 and define

F (x) = max {f1 (x) , f2 (x) , . . . , fn (x)}

Show that F is continuous at x0.
Solution
Use mathematical induction. Let Pn denote the proposition mentioned above. Part
(a) of this exercise shows that P2 is true. Let n denote any positive integer greater than
or equal to 2 and assume that P2, P3, . . . Pn are all true. Let

h (x) = max {f1 (x) , f2 (x) , . . . , fn (x)}

then h and fn+1 are both continuous at x0 and therefore

F (x) = max {f1 (x) , f2 (x) , . . . , fn+1 (x)} = max {h (x) , fn+1 (x)}

is continuous at x0. Hence Pn+1 is true and by the principle of mathematical induction
we may conclude that Pn is true for all positive integers greater than or equal to 2.

21. Find the domains of f ◦ g and g ◦ f .

a. f (x) =
√
x, g (x) = 1− x2

Solution
Df = [0,∞) and Dg = (−∞,∞).
• Let T = [−1, 1]. Then T ⊂ Dg and g (x) ∈ Df whenever x ∈ T . The set T is the
domain of f ◦ g.



22 CHAPTER 2. DIFFERENTIAL CALCULUS OF FUNCTIONS OF ONE VARIABLE

• Let T = [0,∞). Then T ⊂ Df and f (x) ∈ Dg whenever x ∈ T . The set T is the
domain of g ◦ f .

c. f (x) = 1
1−x2 , g (x) = cosx

Solution
Df = {x | x 6= −1, 1} and Dg = (−∞,∞).
• Let T = {x | x 6= nπ, n ∈ Z}. Then T ⊂ Dg and g (x) ∈ Df whenever x ∈ T . The
set T is the domain of f ◦ g.

• Let T = {x | x 6= −1, 1}. Then T ⊂ Df and f (x) ∈ Dg whenever x ∈ T . The set
T is the domain of g ◦ f .

23. Use Theorem 2.2.7 to find all points x0 at which the following functions are continuous.

a.
√
1− x2

Solution
Let f (x) =

√
x and g (x) = 1 − x2. Then g is continuous at all real x0, while f is

continuous at all x0 > 0. We conclude that f ◦ g is continuous at all x0 with 1−x20 > 0;
that is the set ©

x0 | 1− x20 > 0
ª
= (−1, 1)

g.
¡
1− sin2 x

¢−1Á2
Solution
Let f (x) = 1√

x
and g (x) = 1 − sin2 x = cos2 x. Then g is continuous at all real x0,

while f is continuous at all x0 > 0. We conclude that f ◦ g is continuous at all x0 with
cos2 x0 > 0; that is the set©

x0 | cos2 x0 > 0
ª
=
©
x0 | cos2 x0 6= 0

ª
=
n
x0 | x0 6=

π

2
+ kπ, k ∈ Z

o
Note: The answer in the back of the book is not correct.

24. Complete the proof of Theorem 2.2.9 by showing that there is an x2 ∈ [a, b] such that
f (x2) = β.

Solution

Recall that f is continuous on [a, b] and β = supx∈[a,b] f (x) = sup {f (x) | x ∈ [a, b]}. Suppose
there is no x2 ∈ [a, b] such that f (x2) = β. Then f (x) < β for all x ∈ [a, b]. Let t ∈ [a, b],
then f (t) < β, so

f (t) <
f (t) + β

2
< β
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Moreover, since f is continuous at t, there exists an open interval It containing t, such that

f (x) <
f (t) + β

2
for all x ∈ It ∩ [a, b]

Note that H = {It | t ∈ [a, b]} is an open covering of [a, b] , and since [a, b] is compact, H can
be reduced to a finite sub-cover, say

{Iti | 1 ≤ i ≤ n}

Let

β1 = max
1≤i≤n

f (ti) + β

2

Observe that β1 < β, and
f (x) < β1 for all x ∈ [a, b]

This implies that β1 is an upper bound for the set V = {f (x) | x ∈ [a, b]} which is less
than β = supV , a contradiction. We conclude that there must be an x2 ∈ [a, b] such that
f (x2) = β.

2.3 Differentiable Functions of One Variable

3. Use Lemma 2.3.2. to prove that if f 0 (x0) > 0, there is a δ > 0 such that

f (x) < f (x0) if x0 − δ < x < x0 and f (x) > f (x0) if x0 < x < x0 + δ

Solution

Since limx→x0 E (x) = 0, there exists a δ > 0 such that |E (x)| < f 0 (x0) whenever 0 <
|x− x0| < δ. Therefore, if 0 < |x− x0| < δ,

f 0 (x0) +E (x) > 0

Moreover, since
f (x)− f (x0) =

£
f 0 (x0) +E (x)

¤
(x− x0)

the desired result follows.

5. Find all derivatives of f (x) = xn−1 |x|, where n is a positive integer.
Solution

Recall that
d

dx
|x| =

½ |x|
x if x 6= 0
undefined if x = 0
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• Using the product rule we find that if x 6= 0

— f 0 (x) = (n− 1)xn−2 |x| + xn−1 |x|x = (n− 1)xn−2 |x| + xn−2 |x| = nxn−2 |x|, and
similarly

— f 00 (x) = n (n− 1)xn−3 |x|
· · ·

— f (k) (x) = n (n− 1) . . . (n− k + 1)xn−k−1 |x| for 1 ≤ k ≤ n− 1
Observe that the result for f (k) (x) is based on the premise that f (k−1) (x) is of the
form axb |x| where a and b are positive integers. The (n− 1)stderivative of f is no
longer of this form

f (n−1) (x) = n (n− 1) . . . 2 |x| = n! |x|

Hence, its derivative needs to be examined separately

— f (n) (x) =

½
−n! if x < 0
n! if x > 0

, and

— f (k) (x) = 0 if k > n.

• Next we examine f (k) (0). Observe that for integers m

µ
d

dx
xm |x|

¶¯̄̄̄
x=0

=

(
limx→0

xm|x|−0
x−0 = limx→0 x(m−1) |x| = 0 if m ≥ 1

undefined if m < 1

• Combining the results for x = 0 and x 6= 0 we obtain

— f (k) (x) = n (n− 1) . . . (n− k + 1)xn−k−1 |x| for 1 ≤ k ≤ n− 1
Note: The answer in the back of the book is not correct.

— f (n) (x) =

⎧⎨⎩
−n! if x < 0
undefined if x = 0
n! if x > 0

— f (k) (x) =

½
0 if x 6= 0
undefined if x = 0

for k ≥ n+ 1.

10. Prove Theorem 2.3.4 (b).

If f and g are differentiable at x0, then so is f − g and

(f − g)0 (x0) = f 0 (x0)− g0 (x0)

Solution
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Observe

lim
x→x0

(f − g) (x)− (f − g) (x0)

x− x0
= lim

x→x0

f (x)− g (x)− [f (x0)− g (x0)]

x− x0

= lim
x→x0

∙
f (x)− f (x0)− [g (x)− g (x0)]

x− x0

¸
= lim

x→x0

f (x)− f (x0)

x− x0
− lim

x→x0

g (x)− g (x0)

x− x0
= f 0 (x0)− g0 (x0)

We conclude that (f − g)0 (x0) exists and equals f 0 (x0)− g0 (x0).

11. Prove Theorem 2.3.4 (d).

If f and g are differentiable at x0 and g (x0) 6= 0, then f/g is differentiable at x0 andµ
f

g

¶0
(x0) =

f 0 (x0) g (x0)− f (x0) g
0 (x0)

[g (x0)]
2

Solution

Observe

lim
x→x0

³
f
g

´
(x)−

³
f
g

´
(x0)

x− x0
= lim

x→x0

f(x)
g(x) −

f(x0)
g(x0)

x− x0
= lim

x→x0

f (x) g (x0)− f (x0) g (x)

(x− x0) g (x) g (x0)

= lim
x→x0

f (x) g (x0)− f (x0) g (x0) + f (x0) g (x0)− f (x0) g (x)

(x− x0) g (x) g (x0)

= lim
x→x0

[f (x)− f (x0)] g (x0)− f (x0) [g (x)− g (x0)]

(x− x0) g (x) g (x0)

= lim
x→x0

f(x)−f(x0)
x−x0 g (x0)− f (x0)

g(x)−g(x0)
x−x0

g (x) g (x0)

=

h
limx→x0

f(x)−f(x0)
x−x0

i
g (x0)− f (x0)

h
limx→x0

g(x)−g(x0)
x−x0

i
[limx→x0 g (x)] g (x0)

Since g is differentiable at x0, g is continuous at x0, so limx→x0 g (x) = g (x0), therefore

lim
x→x0

³
f
g

´
(x)−

³
f
g

´
(x0)

x− x0
=

f 0 (x0) g (x0)− f (x0) g
0 (x0)

[g (x0)]
2

which proves the stated result.
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15. a. Show that f 0+ (a) = f 0 (a+) if both quantities exist.
Solution
In class I suggested you use the Mean Value Theorem. We will do just that. If f 0 (a+)
exists, then f 0 exists on some open interval (a, a+ δ). If the right hand derivative f 0+ (a)
exists, then f is continuous from the right at a. Let x∗ ∈ (a, a+ δ), then f is continuous
on [a, x∗] and differentiable on (a, x∗), so the Mean Value Theorem applies and there
exists a c ∈ (a, x∗) such that

f (x∗)− f (a)

x∗ − a
= f 0 (c)

This implies

f 0+ (a) = lim
x∗→a+

f (x∗)− f (a)

x∗ − a
= lim

x∗→a+
f 0 (c)

Finally, note that because c ∈ (a, x∗), c→ a+ if x∗ → a+ and since limx→a+ f 0 (x) exists

lim
x∗→a+

f 0 (c) = lim
x→a+

f 0 (x) = f 0 (a+)

We conclude that f 0+ (a) = f 0 (a+).

b. Example 2.3.4 shows that f 0+ (a) may exist even if f
0 (a+) does not. Give an example

where f 0 (a+) exists but f 0+ (a) does not.
Solution
Take a simple function which is not continuous from the right at a. For instance

f (x) =

½
1 if x = 0
x if x > 0

then

lim
x→0+

f (x)− f (0)

x− 0 = lim
x→0+

x− 1
x

is undefined

while f 0 (0+) = 1.

c. Complete the following statement so it becomes a theorem, and prove the theorem: ”If
f 0 (a+) exists and f is ____ at a, then f 0+ (a) = f 0 (a+).”
Solution
”If f 0 (a+) exists and f is continuous from the right at a, then f 0+ (a) = f 0 (a+).”
Proof
If f 0 (a+) exists, then f 0 exists on some open interval (a, a+ δ). Let x∗ ∈ (a, a+ δ),
then since f is continuous from the right at a, f is continuous on [a, x∗] and differentiable
on (a, x∗), so the Mean Value Theorem applies and there exists a c ∈ (a, x∗) such that

f (x∗)− f (a)

x∗ − a
= f 0 (c)



2.3. DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE 27

This implies

lim
x∗→a+

f (x∗)− f (a)

x∗ − a
= lim

x∗→a+
f 0 (c)

Note that because c ∈ (a, x∗), c→ a+ if x∗ → a+ and since limx→a+ f 0 (x) exists

lim
x∗→a+

f 0 (c) = lim
x→a+

f 0 (x) = f 0 (a+)

We conclude that f 0+ (a) exists and equals f
0 (a+).

20. Let n be a positive integer and

f (x) =
sinnx

n sinx
, x 6= kπ (k is integer) .

a. Define f (kπ) such that f is continuous at kπ.
Solution
Let

f (kπ) = lim
x→kπ

f (x) = lim
x→kπ

sinnx

n sinx
= lim

x→kπ

n cosnx

n cosx

= lim
x→kπ

cosnx

cosx
=
cosnkπ

cos kπ
=
(−1)nk

(−1)k
= (−1)(n−1)k

and redefine f as

f (x) =

½ sinnx
n sinx x 6= kπ, k ∈ Z
(−1)(n−1)k x = kπ, k ∈ Z

b. Show that if x is a local extreme point of f , then

|f (x)| =
£
1 +

¡
n2 − 1

¢
sin2 x

¤−1/2
HINT: Express sinnx and cosnx in terms of f (x) and f 0 (x), and add their squares to
obtain a useful identity.
Solution
First consider the case that x 6= kπ, k ∈ Z, then f 0 (x) = 0. Observe that

sinnx = nf (x) sinx

and

0 = f 0 (x) =
n cosnx

n sinx
− sinnx cosx

n sin2 x

=
cosnx

sinx
− f (x)

cosx

sinx
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hence
cosnx = f (x) cosx

therefore

1 = cos2 nx+ sin2 nx = [f (x) cosx]2 + [nf (x) sinx]2

= f2 (x)
£
cos2 x+ n2 sin2 x

¤
= f2 (x)

£
1 +

¡
n2 − 1

¢
sin2 x

¤
which implies that

|f (x)| =
£
1 +

¡
n2 − 1

¢
sin2 x

¤−1/2
Moreover, if k ∈ Z, |f (kπ)| =

¯̄̄
(−1)(n−1)k

¯̄̄
= 1, so the formula

|f (x)| =
£
1 +

¡
n2 − 1

¢
sin2 x

¤−1/2
is true even if x = kπ, k ∈ Z.

c. Show that |f (x)| ≤ 1 for all x. For what values of x is equality attained?
Solution
For integer k, let I denote the closed and bounded interval [(k − 1)π, kπ]. Then f is
continuous on I and by the Extreme Value Theorem f must have a minimum m and
a maximum M on I. Therefore there exists a local extreme point x on I such that
m = f (x). Hence, by the result of Part (b) |m| = |f (x)| ≤ 1. In a similar fashion we
can prove that |M | ≤ 1. This means that for all x in I

−1 ≤ − |m| ≤ m ≤ f (x) ≤M ≤ |M | ≤ 1

so
|f (x)| ≤ 1 for all x in I.

Because k was an arbitrary integer this implies that |f (x)| ≤ 1 for all real x. If n = 1
equality is attained for all x ∈ R, and if n > 1 equality is attained for x = kπ, k ∈ Z.

2.4 L’Hospital’s Rule

In Exercises 2 - 40, find the indicated limits.

6. limx→0
log(1+x)

x

Solution

lim
x→0

log (1 + x)

x
= lim

x→0

1
1+x

1
= 1
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7. limx→∞ ex sin e−x
2

Solution

lim
x→∞

ex sin e−x
2
= lim

x→∞
sin e−x

2

e−x
= lim

x→∞
−2xe−x2 cos e−x2

−e−x

= lim
x→∞

2x

ex2−x
= lim

x→∞
2

(2x− 1) ex2−x

= lim
x→∞

2

(2x− 1) ex(x−1)
= 0

20. limx→0 (1 + x)1/x

Solution

lim
x→0

(1 + x)1/x = elimx→0
log(1+x)

x = elimx→0

1
1+x
1 = e1 = e

23. limx→0+ xα log x

Solution

Observe that if α ≤ 0, limx→0+ xα log x = −∞. When α > 0, then

lim
x→0+

xα log x = lim
x→0+

log x

x−α
= lim

x→0+

1
x

−αx−α−1 = lim
x→0+

− 1
α
xα = 0

26. limx→1+
³
x+1
x−1

´√x2−1
Solution

lim
x→1+

µ
x+ 1

x− 1

¶√x2−1
= elimx→1+[

√
x2−1 log(x+1x−1)]

= elimx→1+[
√
x+1

√
x−1(log(x+1)−log(x−1))]

= elimx→1+[
√
x+1

√
x−1 log(x+1)−

√
x+1

√
x−1 log(x−1)]

= elimx→1+[−
√
2
√
x−1 log(x−1)] = e

limx→1+

∙
−
√
2

log(x−1)
(x−1)−1/2

¸

= e
limx→1+

∙
2
√
2

1
x−1

(x−1)−3/2

¸
= elimx→1+[2

√
2
√
x−1] = 1

2.5 Taylor’s Theorem

2. Suppose f (n+1) (x0) exists, and let Tn be the nth Taylor polynomial of f about x0. Show
that the function

En (x) =

(
f(x)−Tn(x)
(x−x0)n if x ∈ Df − {x0}
0 if x = 0
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Is differentiable at x0 and find E0n (x0).

Solution

Observe

lim
x→x0

En (x)−En (x0)

x− x0
= lim

x→x0

En (x)− 0
x− x0

= lim
x→x0

f(x)−Tn(x)
(x−x0)n

x− x0
= lim

x→x0

f (x)− Tn (x)

(x− x0)
n+1

Let Tn+1 (x) denote the (n+ 1)
st Taylor polynomial of f about x0. Then

lim
x→x0

En (x)−En (x0)

x− x0
= lim

x→x0

f (x)− Tn (x)

(x− x0)
n+1

= lim
x→x0

f (x)− Tn+1 (x)

(x− x0)
n+1 + lim

x→x0

Tn+1 (x)− Tn (x)

(x− x0)
n+1

= 0 + lim
x→x0

"
1

(x− x0)
n+1

(
f (n+1) (x0)

(n+ 1)!
(x− x0)

n+1

)#

=
f (n+1) (x0)

(n+ 1)!

We conclude that

E0n (x0) =
f (n+1) (x0)

(n+ 1)!

4. a. Prove: if f 00 (x0) exists, then

lim
h→0

f (x0 + h)− 2f (x0) + f (x0 − h)

h2
= f 00 (x0)

Solution
Since f 00 (x0) exists, the second Taylor polynomial T2 of f about x0 is defined. We will
compare f (x0 + h) to T2 (x0 + h), and f (x0 + h) to T2 (x0 + h). Recall

lim
x→x0

f (x)− T2 (x)

(x− x0)
2 = 0

If in this result x is replaced by x0 + h we obtain

lim
h→0

f (x0 + h)− T2 (x0 + h)

h2
= 0
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and similarly

lim
h→0

f (x0 − h)− T2 (x0 − h)

h2
= 0

Now observe

lim
h→0

f (x0 + h)− 2f (x0) + f (x0 − h)

h2

= lim
h→0

f (x0 + h)− T2 (x0 + h)

h2
+ lim

h→0

T2 (x0 + h)− 2f (x0) + T2 (x0 − h)

h2

+ lim
h→0

f (x0 − h)− T2 (x0 − h)

h2

= lim
h→0

T2 (x0 + h)− 2f (x0) + T2 (x0 − h)

h2

= lim
h→0

∙
f (x0) + f 0 (x0)h+ 1/2f 00 (x0)h2

h2
− 2f (x0)

h2

+
f (x0)− f 0 (x0)h+ 1/2f 00 (x0)h2

h2

¸
= lim

h→0

f 00 (x0)h2

h2
= lim

h→0
f 00 (x0) = f 00 (x0)

b. Prove or give a counter example: If the limit in Part a exists, then so does f 00 (x0) and
they are equal.
Solution
Notice that the proof of Part a is based on the assumption that f 00 (x0) exists. Without
that assumption T2 is undefined and the proof falls apart. To generate a counterexample
for the given statement we will look for a function f that quadratically approaches f (x0)
as x approaches x0 and for which f 00 (x0) is undefined. With x0 = 0, the function
f (x) = x |x| satisfies those requirements. We now verify that this function truly is a
counterexample.

• f 0 (0) = limx→0
x|x|−0

x = limx→0 |x| = 0, and if x 6= 0, f 0 (x) = |x|+ x|x|
x = 2 |x|. So

lim
x→0

f 0 (x)− f 0 (0)

x
= lim

x→0
2 |x|
x

is undefined

Therefore f 00 (0) is undefined.
• Observe

lim
h→0

f (h)− 2f (0) + f (−h)
h2

= lim
h→0

h |h|− h |−h|
h2

= lim
h→0

0

h2
= lim

h→0
0 = 0
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This means that with x0 = 0, limh→0
f(x0+h)−2f(x0)+f(x0−h)

h2 = 0.

8. a. Let

h (x) =
nX

r=0

αr (x− x0)
r

be a polynomial of degree ≤ n such that

lim
x→x0

h (x)

(x− x0)
n = 0

Show that αr = 0 for 0 ≤ r ≤ n.
Solution
We use induction on n. Let Pn denote the proposition above.

• First we verify that P0 is true. Note that if n = 0, them h (x) = α0 and (x− x0)
n =

1, so
lim
x→x0

α0 = 0

Hence, α0 = 0.
• Let k denote a nonnegative integer and let Pk be true. Additionally let

h (x) =
k+1X
r=0

αr (x− x0)
r and lim

x→x0

h (x)

(x− x0)
k+1

= 0

Then

lim
x→x0

h (x) = lim
x→x0

"
h (x)

(x− x0)
k+1

(x− x0)
k+1

#
= 0 · 0 = 0

and since h is a polynomial it is continuous everywhere, so

h (x0) = lim
x→x0

h (x) = 0

which means α0 = 0. Thus, with m = r − 1

h (x) =
k+1X
r=1

αr (x− x0)
r =

kX
m=0

αm+1 (x− x0)
m+1

and

0 = lim
x→x0

h (x)

(x− x0)
k+1

= lim
x→x0

Pk
m=0 αm+1 (x− x0)

m+1

(x− x0)
k+1

= lim
x→x0

Pk
m=0 αm+1 (x− x0)

m

(x− x0)
k
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Observe that the numerator in the last expression is a polynomial of degree ≤ k, so
the induction assumption applies and we may conclude that in addition to the fact
that α0 = 0, also αr = 0 for 1 ≤ r ≤ k + 1. Hence Pk+1 is true. This completes
the proof.

b. Suppose f is n times differentiable at x0 and p =
Pn

r=0 αr (x− x0)
r is a polynomial of

degree ≤ n such that

lim
x→x0

f (x)− p (x)

(x− x0)
n = 0

Show that

αr =
f (r) (x0)

r!
if 0 ≤ r ≤ n

that is, p = Tn. the nth Taylor polynomial of f about x0.
Solution
Observe

0 = lim
x→x0

f (x)− p (x)

(x− x0)
n = lim

x→x0

f (x)− Tn (x)

(x− x0)
n + lim

x→x0

Tn (x)− p (x)

(x− x0)
n

= 0 + lim
x→x0

Tn (x)− p (x)

(x− x0)
n

we conclude that

lim
x→x0

Tn (x)− p (x)

(x− x0)
n = 0

and by Part a, this implies that Tn (x)− p (x) is identically equal to zero, so p = Tn.

16. Find an upper bound for the magnitude of the error in the approximation.

b.
√
1 + x ≈ 1 + x

2 , |x| <
1
8

Solution
Let f (x) =

√
1 + x, then use Taylor’s theorem with n = 1 and x0 = 0.

√
1 + x−

h
1 +

x

2

i
=

f (2) (c)

2!
x2

so ¯̄̄√
1 + x−

h
1 +

x

2

i¯̄̄
=

¯̄̄̄
¯f (2) (c)2!

x2

¯̄̄̄
¯ ≤ 12

µ
1

8

¶2 ¯̄̄
f (2) (c)

¯̄̄
=

1

128

¯̄̄
f (2) (c)

¯̄̄
Next we estimate

¯̄
f (2) (c)

¯̄
= 1

4(c+1)3/2
for |c| < 1

8 . Observe¯̄̄
f (2) (c)

¯̄̄
=

1

4 (c+ 1)3/2
≤ 1

4
¡
−18 + 1

¢3/2 = 4

49

√
14
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Hence, an upper bound for the magnitude of the error is given by

1

128
· 4
49

√
14 =

1

1568

√
14 ≈ 2. 386 3× 10−3

Note: The answer in the back of the book is not correct.

d. log x ≈ (x− 1)− (x−1)2
2 + (x−1)3

3 , |x− 1| < 1
64

Solution
Let f (x) = log x, then use Taylor’s theorem with n = 3 and x0 = 1.

log x−
"
(x− 1)− (x− 1)

2

2
+
(x− 1)3

3

#
=

f (4) (c)

4!
(x− 1)4

so ¯̄̄̄
¯log x−

"
(x− 1)− (x− 1)

2

2
+
(x− 1)3

3

#¯̄̄̄
¯

=

¯̄̄̄
¯f (4) (c)4!

(x− 1)4
¯̄̄̄
¯ ≤ 1

24

µ
1

64

¶4 ¯̄̄
f (4) (c)

¯̄̄
=

1

402 653 184

¯̄̄
f (4) (c)

¯̄̄
Next we estimate

¯̄
f (4) (c)

¯̄
= 6

c4 for |c− 1| <
1
64 . Observe¯̄̄

f (4) (c)
¯̄̄
=
6

c4
≤ 6¡

1− 1
64

¢4 = 33 554 432

5250 987

Hence, an upper bound for the magnitude of the error is given by

1

402 653 184
· 33 554 432
5250 987

=
1

63 011 844
≈ 1. 587× 10−8


