
Chapter 3

Integral Calculus of Functions of One
Variable

3.1 Definition of the Integral

1. Show that there cannot be more than one number L that satisfies Definition 3.1.1.

Let f be defined on [a, b]. We say that f is Riemann integrable on [a, b] if there is a number
L with the following property: For every ² > 0, there is a δ > 0 such that

|σ − L| < ²

if σ is any Riemann sum of f over a partition P of [a, b] such that kPk < δ.

Solution

Let ² > 0. Suppose the numbers L1 and L2 both satisfy this definition. Then there exists a
δ1 > 0 such that

|σ − L1| < ²

2

if σ is any Riemann sum of f over a partition P of [a, b] such that kPk < δ1. Similarly there
exists a δ2 > 0 such that

|σ − L2| < ²

2

if σ is any Riemann sum of f over a partition P of [a, b] such that kPk < δ2. Let δ =
min {δ1, δ2}, then if σ is any Riemann sum of f over a partition P of [a, b] such that kPk < δ

|L2 − L1| = |σ − L1 − (σ − L2)| ≤ |σ − L1|+ |σ − L2| < ²

2
+
²

2
= ²

Since this inequality holds for all ² > 0, L1 must equal L2.

35
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2. a. Prove: If
R b
a f (x) dx exists, then for every ² > 0, there is a δ > 0 such that |σ1 − σ2| < ²

if σ1 and σ2 are Riemann sums of f over partitions P1 and P2 of [a, b] with norms less
than δ.
Solution
Let L =

R b
a f (x) dx and ² > 0. Then there exists a δ > 0 such that

|σ − L| < ²

2

if σ is any Riemann sum of f over a partition P of [a, b] such that kPk < δ. This means
that if σ1 and σ2 are Riemann sums of f over partitions P1 and P2 of [a, b] with norms
less than δ

|σ1 − L| < ²

2
and |σ2 − L| < ²

2

hence
|σ1 − σ2| = |σ1 − L− (σ2 − L)| ≤ |σ1 − L|+ |σ2 − L| < ²

2
+
²

2
= ²

b. Suppose that there is an M > 0 such that, for every δ > 0, there are Riemann sums σ1
and σ2 over a partition P of [a, b] with kPk < δ such that |σ1 − σ2| ≥M . Use Part (a)
to prove that f is not integrable over [a, b].
Solution
Suppose that f is integrable over [a, b]. Take ² < M and let δ be determined as in Part
(a). Then with P1 = P2 = P and kPk < δ

|σ1 − σ2| < ² < M

for any two Riemann sums σ1 and σ2 of f over P , a contradiction.

4. Prove directly from Definition 3.1.1 thatZ b

a
x2dx =

b3 − a3
3

Do not assume in advance that the integral exists. The proof of this is part of the problem.
HINT: Let P = {x0, x1,...,xn} be an arbitrary partition of [a, b]. Use the mean value theorem
to show that

b3 − a3
3

=
nX
j=1

d2j (xj − xj−1)

for some points d1, . . . , dn, where xj−1 < dj < xj. Then relate this sum to arbitrary Riemann
sums for f (x) = x2 over P .
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Solution

Let ² > 0. Apply the mean value theorem to the function g (x) = x3 on the interval [xj−1, xj ].
That is: there exists a point dj with xj−1 < dj < xj such that

g (xj)− g (xj−1)
xj − xj−1 = g0 (dj)

which implies
x3j − x3j−1
xj − xj−1 = 3d

2
j so

1

3

¡
x3j − x3j−1

¢
= d2j (xj − xj−1)

Summing both sides of the last equation yields

b3 − a3
3

=
nX
j=1

1

3

¡
x3j − x3j−1

¢
=

nX
j=1

d2j (xj − xj−1)

An arbitrary Riemann sum of f over P is of the form

σ =
nX
j=1

f (cj) (xj − xj−1) =
nX
j=1

c2j (xj − xj−1)

=
nX
j=1

d2j (xj − xj−1) +
nX
j=1

¡
d2j − c2j

¢
(xj − xj−1)

=
b3 − a3
3

+
nX
j=1

¡
d2j − c2j

¢
(xj − xj−1)

Hence¯̄̄̄
σ − b

3 − a3
3

¯̄̄̄
=

¯̄̄̄
¯̄ nX
j=1

¡
d2j − c2j

¢
(xj − xj−1)

¯̄̄̄
¯̄ ≤ nX

j=1

¯̄
d2j − c2j

¯̄
(xj − xj−1)

=
nX
j=1

|dj − cj | |dj + cj | (xj − xj−1) ≤
nX
j=1

|dj − cj | (|dj |+ |cj |) (xj − xj−1)

≤ 2 kPkmax {|a| , |b|}
nX
j=1

(xj − xj−1) = 2 kPkmax {|a| , |b|} (b− a)

Now choose 0 < δ < ²
2(b−a)max{|a|,|b|} , then¯̄̄̄

σ − b
3 − a3
3

¯̄̄̄
< ²
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whenever kPk < δ. This completes the proof.

7. Let f be bounded on [a, b] and let P be a partition of [a, b]. Prove: The lower sum s (P ) of
f over P is the infimum of the set of all Riemann sums of f over P .

Solution

If P = {x0, x1, . . . , xn} is a partition of [a, b], then

s (P ) =
nX
j=1

mj (xj − xj−1)

where
mj = inf

xj−1≤x≤xj
f (x)

An arbitrary Riemann sum of f over P is of the form

σ =
nX
j=1

f (cj) (xj − xj−1)

where xj−1 ≤ cj ≤ xj . Since mj ≤ f (cj), it follows that s (P ) ≤ σ. Hence s (P ) is a lower
bound for the set of all Riemann sums of f over P . To show that it is the greatest lower
bound of this set, we let ² > 0 and prove that there exists a Riemann sum σ of f over P such
that σ < s (P ) + ². Because mj = infxj−1≤x≤xj f (x), the number mj +

²
n(xj−xj−1) is not a

lower bound of f on [xj−1, xj ]. Hence, there exists a cj ∈ [xj−1, xj ] with the property that

f (cj) < mj +
²

n (xj − xj−1)

The Riemann sum σ produced this way is

σ =
nX
j=1

f (cj) (xj − xj−1) <
nX
j=1

µ
mj +

²

n (xj − xj−1)
¶
(xj − xj−1)

=
nX
j=1

mj (xj − xj−1) +
nX
j=1

²

n
= s (P ) + ²

This completes the proof.

14. Suppose that −∞ < a < d < b <∞ and

g (x) =

½
g1, a < x < d
g2, d < x < b
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where g1 and g2 are constants, and let g (a) , g (b), and g (d) be arbitrary. Suppose that f is
defined on [a, b], continuous from the right at a and form the left at b, and continuous at d.
Show that

R b
a f (x) dg (x) exists and find its value.

Solution

Let ² > 0 and let P = {x0, x1, . . . , xn} denote a partition of [a, b]. In order to be able to
separate the influence of the jump discontinuities of the function g on a Riemann-Stieltjes
sum of f with respect to g over P , we let δ1 = 1

2 min {d− a, b− d} and kPk ≤ δ1. Then
there exists an i with

2 ≤ i ≤ n− 2
such that d ∈ [xi, xi+1). Hence an arbitrary Riemann-Stieltjes sum of f with respect to g
over P takes the form

σ =
nX
j=1

f (cj) [g (xj)− g (xj−1)] = f (c1) [g (x1)− g (x0)] + f (ci) [g (xi)− g (xi−1)]

+f (ci+1) [g (xi+1)− g (xi)] + f (cn) [g (xn)− g (xn−1)]
= f (c1) [g1 − g (a)] + f (ci) [g (xi)− g1] + f (ci+1) [g2 − g (xi)] + f (cn) [g (b)− g2]
= f (a) [g1 − g (a)] + f (d) [g (xi)− g1] + f (d) [g2 − g (xi)] + f (b) [g (b)− g2]

+ (f (c1)− f (a)) [g1 − g (a)] + (f (ci)− f (d)) [g (xi)− g1]
+ (f (ci+1)− f (d)) [g2 − g (xi)] + (f (cn)− f (b)) [g (b)− g2]

where cj ∈ [xj−1, xj ] for 1 ≤ j ≤ n. Observe that if d = xi, then

f (d) [g (xi)− g1] + f (d) [g2 − g (xi)] = f (d) [g (d)− g1] + f (d) [g2 − g (d)]
= f (d) [g2 − g1]

and if d 6= xi, then again

f (d) [g (xi)− g1] + f (d) [g2 − g (xi)] = f (d) [g1 − g1] + f (d) [g2 − g1]
= f (d) [g2 − g1]

Hence

σ = f (a) [g1 − g (a)] + f (d) [g2 − g1] + f (b) [g (b)− g2]
+ (f (c1)− f (a)) [g1 − g (a)] + (f (ci)− f (d)) [g (xi)− g1]
+ (f (ci+1)− f (d)) [g2 − g (xi)] + (f (cn)− f (b)) [g (b)− g2]
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and because either g (xi) = g1, or g (xi) = g (d)

|σ − {f (a) [g1 − g (a)] + f (d) [g2 − g1] + f (b) [g (b)− g2]}|
≤ |f (c1)− f (a)| |g1 − g (a)|+ |f (ci)− f (d)| |g (xi)− g1|

+ |f (ci+1)− f (d)| |g2 − g (xi)|+ |f (cn)− f (b)| |g (b)− g2|
≤ |f (c1)− f (a)| (|g1|+ |g (a)|) + |f (ci)− f (d)| (|g (d)|+ |g2|)

+ |f (ci+1)− f (d)| (|g2|+ |g1|+ |g (d)|) + |f (cn)− f (b)| (|g (b)|+ |g2|)

Just like we did in class, we use the continuity of f to estimate the expression on the right.
Since c1 ≥ a and cn ≤ b and f is continuous from the right at a and from the left at b, and
continuous at d, there exists a δ2 > 0 such that if

|c1 − a| , |ci − d| , |ci+1 − d| , and |cn − b|

are all less than δ2, then

|f (c1)− f (a)| (|g1|+ |g (a)|) , |f (ci)− f (d)| (|g (d)|+ |g2|) ,
|f (ci+1)− f (d)| (|g2|+ |g1|+ |g (d)|) , and |f (cn)− f (b)| (|g (b)|+ |g2|)

are all less than ²
4 . Let δ = min

©
δ1,

1
2δ2
ª
, then

|σ − {f (a) [g1 − g (a)] + f (d) [g2 − g1] + f (b) [g (b)− g2]}| < ²

whenever kPk < δ. This shows that the Riemann-Stieltjes integral
R b
a f (x) dg (x) exists and

equals Z b

a
f (x) dg (x) = f (a) [g1 − g (a)] + f (d) [g2 − g1] + f (b) [g (b)− g2]

3.2 Existence of the Integral

1. Complete the proof of Lemma 3.2.1 by verifying Eqn. (3). That is:

Suppose that
|f (x)| ≤M , a ≤ x ≤ b,

and let P 0 be a partition of [a, b] obtained by adding r points to a partition P = {x0, x1, . . . , xn}
of [a, b]. Then show that

s (P ) ≤ s ¡P 0¢ ≤ s (P ) + 2Mr kPk
Solution
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The proof of this result is almost identical to the proof of the first part of Lemma 3.2.1, which
was covered in class. First we suppose that r = 1, so P 0 is obtained from P by adding one
partition point c. Let xi−1 < c < xi, and

mi = inf
xi−1≤x≤xi

f (x) , mi1 = inf
xi−1≤x≤c

f (x) , and mi2 = inf
c≤x≤xi

f (x)

then

s
¡
P 0
¢− s (P ) = mi1 (c− xi−1) +mi2 (xi − c)−mi (xi − xi−1)

= (mi1 −mi) (c− xi−1) + (mi2 −mi) (xi − c)

Since mi1 ≥ mi and mi2 ≥ mi, this implies that s (P 0)− s (P ) ≥ 0. Hence

0 ≤ s
¡
P 0
¢− s (P ) = (mi1 −mi) (c− xi−1) + (mi2 −mi) (xi − c)

≤ 2M (c− xi−1) + 2M (xi − c) = 2M (xi − xi−1) ≤ 2M kPk

This establishes the desired result for r = 1. Now suppose that r > 1. Let P (0) = P and let
P (j) be obtained by adding the point cj to P (j−1). Finally, let P 0 = P (r), then

0 ≤ s
³
P (j)

´
− s

³
P (j−1)

´
≤ 2M

°°°P (j−1)°°° , 1 ≤ j ≤ r

Therefore

0 ≤
rX
j=1

h
s
³
P (j)

´
− s

³
P (j−1)

´i
≤ 2M

rX
j=1

°°°P (j−1)°°° ≤ 2Mr kPk
We conclude that

0 ≤ s ¡P 0¢− s (P ) ≤ 2Mr kPk
which completes the proof.

2. Show that if f is integrable on [a, b] , thenZ b

a
f (x) dx =

Z b

a
f (x) dx

Solution

This is the second part of Theorem 3.2.3. Its proof is very similar to the proof of the first
part of the theorem, which was presented in class. We compare the lower integral to a lower
sum, then we compare the lower sum to a Riemann sum, and finally we compare the Riemann
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sum to the Riemann integral. Let ² > 0. Suppose that P = {x0, x1, . . . , xn} is a partition
of [a, b] and that σ is a Riemann sum of f over P . Then¯̄̄̄

¯
Z b

a
f (x) dx−

Z b

a
f (x) dx

¯̄̄̄
¯ ≤

¯̄̄̄
¯
Z b

a
f (x) dx− s(P )

¯̄̄̄
¯+ |s(P )− σ|

+

¯̄̄̄
σ −

Z b

a
f (x) dx

¯̄̄̄

Since the lower integral
R b
a f (x) dx is the supremum of the lower sums, there exists a partition

P0 such that Z b

a
f (x) dx− ²

3
< s (P0) ≤

Z b

a
f (x) dx

Also, because f is integrable on[a, b], there exists a δ > 0 such that¯̄̄̄
σ −

Z b

a
f (x) dx

¯̄̄̄
<
²

3

whenever kPk < δ. Suppose that kPk < δ and P is a refinement of P0. ThenZ b

a
f (x) dx− ²

3
< s (P0) ≤ s (P ) ≤

Z b

a
f (x) dx

so ¯̄̄̄
¯
Z b

a
f (x) dx− s(P )

¯̄̄̄
¯ < ²

3

Hence ¯̄̄̄
¯
Z b

a
f (x) dx−

Z b

a
f (x) dx

¯̄̄̄
¯ < 2²

3
+ |s(P )− σ|

and this inequality holds for every Riemann sum σ of f over P . Finally, since s (P ) is the
infimum of these Riemann sums, we may choose σ in such a way that

|s(P )− σ| < ²

3

and we obtain ¯̄̄̄
¯
Z b

a
f (x) dx−

Z b

a
f (x) dx

¯̄̄̄
¯ < ²

Since this is true for all ² > 0, the desired result follows.
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4. Prove: If f is integrable on [a, b] and ² > 0, then S (P )−s (P ) < ² if kPk is sufficiently small.
HINT: Use Theorem 3.1.4.

Solution

Actually, the hint given here is a misprint. Instead you should use Lemma 3.2.4.

If f is bounded on [a, b] and ² > 0, there is a δ > 0 such thatZ b

a
f (x) dx ≤ S (P ) <

Z b

a
f (x) dx+ ²

and Z b

a
f (x) dx ≥ s (P ) >

Z b

a
f (x) dx− ²

if kPk < δ.

Let ² > 0. Since f is integrable on [a, b], f is bounded on [a, b], andZ b

a
f (x) dx =

Z b

a
f (x) dx =

Z b

a
f (x) dx

We now apply Lemma 3.2.4 with ² replaced by ²
2 . Then we know that there is a δ > 0 such

that for all partitions P of [a, b] with kPk < δ

S (P )− s (P ) <

Z b

a
f (x) dx+

²

2
−
ÃZ b

a
f (x) dx− ²

2

!

=

Z b

a
f (x) dx+

²

2
−
µZ b

a
f (x) dx− ²

2

¶
= ²

This completes the proof.

3.3 Properties of the Integral

1. Prove Theorem 3.3.2

If f is integrable on [a, b] and c is a constant, then cf is integrable on [a, b] andZ b

a
cf (x) dx = c

Z b

a
f (x) dx

Solution
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Let ² > 0. Any Riemann sum of cf over a partition P = {x0, x1, . . . , xn} of [a, b] can be
written as

σcf =
nX
j=1

cf (cj) (xj − xj−1) = c
nX
j=1

f (cj) (xj − xj−1) = cσf

If c 6= 0, then because f is integrable on [a, b], there exists a δ > 0 such that whenever
kPk < δ ¯̄̄̄

σf −
Z b

a
f (x) dx

¯̄̄̄
<
²

|c|
so ¯̄̄̄

σcf − c
Z b

a
f (x) dx

¯̄̄̄
=

¯̄̄̄
cσf − c

Z b

a
f (x) dx

¯̄̄̄
= |c|

¯̄̄̄
σf −

Z b

a
f (x) dx

¯̄̄̄
< |c| ²|c| = ²

This proves the desired result when c 6= 0. If c = 0, then both σcf and c
R b
a f (x) dx equal

zero, so again ¯̄̄̄
σcf − c

Z b

a
f (x) dx

¯̄̄̄
= 0 < ²


