Alluvial Stratigraphy in Otsego County

A view from the river Les Hasbargen October 14, 2010

Butternut Creek, 10/1/2010

Overview

Acknowledgements Danch Mateson Link Carroll, Lindy Klink, Emmon Johnson Models for floodplain stratigration Observations from GPR in local floodplates The view from the river: model n processes the story in the banks

Floodplain stratigraphy

- Models for floodplain development
 - Channel lag and overbank fines
 - Exponential decay of upward growth of floodplain
 - Lateral migration, cutoffs, bar hopping, and channel avulsion
 - Legacy sediment model
 - Toward a local model: reaches with beaches and reaches without
- GPR study at Pine Lake: a lesson in the subsurface
- Questions:
 - Temporal continuity of strata?
 - How laterally continuous are layers?
 - Is there evidence for an historic depositional event? Can we date alluvial sediments?
 - Is the present like the past?
 - Can we discriminate between models?

Floodplain and Riparian Wetland Restoration BMP Conceptual Design

Existing Condition Proposed Restoration

Big Spring Run - Type Section

Courtesy Franklin & Marshall College

Pine Lake Floodplain: Rests on a gravel that is above mean flow Missing the redox boundary and hydric soil

1.3 m

White arrows point to cobble/silt layer contact

GPRofile

Map view of buried channels

The view from the river

- Cutbanks expose deposits of the past
- Modern channel patterns and processes
 - Depositional features (longitudinal bars, point bars, mud pools, LWD pools)
 - Erosional features (scours, flood channels, and cutbanks)
 - Vertical accretion? (the thick tan layer)
 - Lateral accretion? Bar hopping and dipping mud layers
 - Down channel variation in reach "type"
 - Still water runs deep
 - Bars, riffles, pools

Floodplain growth Butternut Creek, Oct. 1, 2010

Otego Creek at Bankfull March 2010

One source of gravel bars: tributaries!

Unnamed tributary to Butternut Creek

Tributary Delta Butternut Creek

the plent flood channel with fresh grave

er a muddy substrate (crevasse splay)

Bank collapse from 10/1/2010 event

Gravel and fines interfinger Off screen to left—rapids!

Riffle-pool reach Butternut Creek near Gilbertsville Note the bank collapse

Gravel bar burying woody debris Butternut Creek near Gilbertsville

Quiet Deep Reaches with high muddy banks

Butternut Creek Summer 2010

Gravel delta at a tributary junction Otego Creek

Gravel Delta

Massive peat Otego Creek

Close up of Peat/Clay

Signs of lateral accretion

Floodplain fines over gravel Unadilla River near New Berlin

Image courtesy of Damon Matteson

Gravel below dark gray carbonrich layer overlain by massive muddy layer **looks like Legacy Unadilla River** near New Berlin

Image courtesy of Damon Matteson

Surprises to me

- Low gradient doesn't mean no activity
- Dipping mud layers (lateral accretion deposits)
- Organic material gets buried a lot!
- Channel perimeters are very active: lose up to a meter/yr in bank erosion, and can bury trees, tractor tires, golf balls in a hurry
- Vertical accretion dominates slow deep reaches; lateral and vertical common in riffle-pool reaches
- LWD is common, as are huge maples, willows, and walnuts along the banks: the trees have a story to tell

The meaning of the basal peat...

- Clearly an oxic/anoxic boundary (orange to red and gray-brown-black zones; see bag)
- Is it a buried floodplain?
- Are they just local woody debris mats buried by lateral accretion?
- Does the water table dictate soil redox zones and preservation of organics?
- Are soil forming processes capable of smearing entire floodplain deposits in 100-200 yrs?

Our next steps

- Date the base of the massive floodplain deposits
 - Everywhere young = legacy sediment model validated
 Large age range discounts legacy model=>
- Working toward a conceptual framework to understand local rivers
 - Geologically young and low gradient (deglacial setting)
 - Riffle-pool and deep run reaches characterize local channels (*reaches with beaches and reaches without*)
 - Unstable banks are everywhere
 - Is current level of activity characteristic for the Holocene?

References

- Pizzuto, Jim and Michael O'Neal, *Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia*, Geology, January 2009, v. 37 no. 1, p. 19-22. doi: 10.1130/G25207A.1.
- Walter, Robert J., and Dorothy C. Merritts, *Natural streams and the legacy of water-powered mills*, Science, 18 January 2008:Vol. 319. no. 5861, pp. 299 304. DOI: 10.1126/science.1151716
- Walter, Robert J., Dorothy C. Merritts, and Mike Rahnis, *Estimating volume, nutrient content, and rates of stream bank erosion of legacy sediment in the Piedmont and valley and ridge physiographic provinces, southeastern and central PA, A Report to the Pennsylvania Department of Environmental Protection, September 13, 2007. Available at http://www.portal.state.pa.us/portal/server.pt/community/chesapeake_bay_program/10513/workgroup_proceedings/553510#legacy.*
- Scully, Richard and Richard Arnold, *Holocene alluvial stratigraphy in the upper Susquehanna River Basin, New York*, Quaternary Research 15, p. 327-344, (1981)
- Hartranft, Jeffrey, US EPA's Principles for Ecological Restoration of Aquatic Resources and a New and Innovative Best Management Practice To Address Legacy Sediment Impairments, Pennsylvania Department of Environmental Protection, 2009.
- Scudder D. Mackey, and John S. Bridge, *Three-dimensional model of alluvial stratigraphy; theory and applications*, Journal of Sedimentary Research; February 1995; v. 65; no. 1b; p. 7-31. <u>http://jsedres.geoscienceworld.org/cgi/content/abstract/65/1b/7</u>