Platonic Solids,
or, the power of counting

Keith Jones

Pi Mu Epsilon Induction
SUNY Oneonta April 2017
What is a Platonic Solid?

Named after Plato
What is a Platonic Solid?

Named after, Plato
What is a Platonic Solid?

Named after Plato, **Platonic solids** are polyhedrons (3-dimensional objects with flat faces and straight edges) satisfying:

- all faces are congruent – same size and shape,
- all faces are regular polygons – straight, equal-length edges,
- the same number of faces meet at each vertex, and
- the solid is convex (no indentations).

![Platonic Solids Diagram]

- Tetrahedron
- Cube
- Octahedron
- Dodecahedron
- Icosahedron

- all faces are congruent – same size and shape,
What is a Platonic Solid?

Named after, Plato, Platonic solids are polyhedrons (3-dimensional objects with flat faces and straight edges) satisfying:

- all faces are congruent – same size and shape,
- all faces are regular polygons – straight, equal-length edges,
What is a Platonic Solid?

Named after, Plato, Platonic solids are polyhedrons (3-dimensional objects with flat faces and straight edges) satisfying:

- all faces are congruent – same size and shape,
- all faces are regular polygons – straight, equal-length edges,
- the same number of faces meet at each vertex, and
What is a Platonic Solid?

Named after, Plato, Platonic solids are polyhedrons (3-dimensional objects with flat faces and straight edges) satisfying:

- all faces are congruent – same size and shape,
- all faces are regular polygons – straight, equal-length edges,
- the same number of faces meet at each vertex, and
- the solid is convex (no indentations).
The Platonic Solids

1. The tetrahedron has 4 triangular faces, 6 edges, and 4 vertices:

Creative Commons: PCC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=38708
2. The cube or hexahedron has 6 square faces, 12 edges, and 8 vertices:
3. The octahedron has 8 triangular faces, 12 edges, and 6 vertices:
4. The dodecahedron has 12 pentagonal faces, 30 edges, and 20 vertices:
5. The **icosahedron** has **20** triangular faces, **30** edges, and **12** vertices:
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.

In 1509, Luca Pacioli wrote *De Divina Proporzione*, which included a discussion of the platonic solids, with sketches by his friend Leonardo De Vinci.
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.

In 1509, Luca Pacioli wrote *De Divina Proportione*, which included a discussion of the platonic solids, with sketches by his friend Leonardo De Vinci.
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.

In 1509, Luca Pacioli wrote *De Divina Proportione*, which included a discussion of the platonic solids, with sketches by his friend Leonardo De Vinci.
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.

In 1509, Luca Pacioli wrote *De Divina Proportione*, which included a discussion of the platonic solids, with sketches by his friend Leonardo De Vinci.
A Bit of History...

Plato linked the solids to the four elements in his text *Timaeus* (360 BC), which speculates on the nature of the physical world.

In 1509, Luca Pacioli wrote *De Divina Proportione*, which included a discussion of the platonic solids, with sketches by his friend Leonardo De Vinci.
A Bit More History...

Johannes Kepler, in his *Mysterium Cosmographicum* (1596), described a heliocentric model of the solar system, in which the five Platonic solids separated the six known planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn).
Why aren’t there other Platonic solids?

Is it just that these are the only ones we’ve found? Could it be there are others out there waiting to be discovered?
Why aren’t there other Platonic solids?

Is it just that these are the only ones we’ve found? Could it be there are others out there waiting to be discovered?

If there really are only these five, how can we show that? How can we prove that there can be no others?
Leonhard Euler (born April 15, 1707; Happy Birthday!) developed a way of assigning a number χ to each polyhedron which captures some of its geometric properties.

This number χ is called the Euler Characteristic in his honor.
The Euler Characteristic \(\chi\) for the surface a polyhedron with \(F\) faces, \(E\) edges, and \(V\) vertices is:

\[
\chi = F - E + V
\]
The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is:

$$\chi = F - E + V \quad \text{or} \quad \chi = F + V - E$$
How to count edges and vertices

Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex.
How to count edges and vertices

Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex.

Since there are p edges per face, but each edge connects 2 faces, there must be:

$$E = \frac{pF}{2}$$
edges,
How to count edges and vertices

Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex.

Since there are p edges per face, but each edge connects 2 faces, there must be:

$$E = \frac{pF}{2} \text{ edges},$$

and since each edge connects 2 vertices, and there are q edges per vertex, there must be:

$$V = \frac{2E}{q} \text{ vertices.}$$
How to count edges and vertices

Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex.

Since there are p edges per face, but each edge connects 2 faces, there must be:

$$E = \frac{pF}{2} \text{ edges},$$

and since each edge connects 2 vertices, and there are q edges per vertex, there must be:

$$V = \frac{2E}{q} \text{ vertices}.$$

This is nicely summed up with $pF = 2E = qV$.
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \times 12}{2} = 30 \text{ edges, } \frac{2 \times 30}{3} = 20 \text{ vertices.}
\]
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges}, \quad \frac{2 \cdot 30}{3} = 20 \text{ vertices}.
\]

▶ dodecahedron: \(F = 12, \ E = 30, \ V = 20. \ \chi = 2\)
Euler Characteristic \((F + V - E) \) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5 \) edges on each face), and \(q = 3 \) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges}, \quad \frac{2 \cdot 30}{3} = 20 \text{ vertices}.
\]

- dodecahedron: \(F = 12, \ E = 30, \ V = 20. \ \chi = 2\)
- tetrahedron:
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- dodecahedron: \(F = 12, \ E = 30, \ V = 20. \ \chi = 2\)
- tetrahedron: \(F = 4, \ E = 6, \ V = 4. \ \chi = 2\)
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- dodecahedron: \(F = 12, E = 30, V = 20\). \(\chi = 2\)
- tetrahedron: \(F = 4, E = 6, V = 4\). \(\chi = 2\)
- hexahedron:
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- dodecahedron: \(F = 12, E = 30, V = 20\). \(\chi = 2\)
- tetrahedron: \(F = 4, E = 6, V = 4\). \(\chi = 2\)
- hexahedron: \(F = 6, E = 12, V = 8\). \(\chi = 2\)
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- dodecahedron: \(F = 12, E = 30, V = 20. \chi = 2\)
- tetrahedron: \(F = 4, E = 6, V = 4. \chi = 2\)
- hexahedron: \(F = 6, E = 12, V = 8. \chi = 2\)
- octahedron:
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30\ \text{edges},\ \frac{2 \cdot 30}{3} = 20\ \text{vertices}.
\]

- dodecahedron: \(F = 12,\ E = 30,\ V = 20\). \(\chi = 2\)
- tetrahedron: \(F = 4,\ E = 6,\ V = 4\). \(\chi = 2\)
- hexahedron: \(F = 6,\ E = 12,\ V = 8\). \(\chi = 2\)
- octahedron: \(F = 8,\ E = 12,\ V = 6\). So \(\chi = 2\)
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges}, \quad \frac{2 \cdot 30}{3} = 20 \text{ vertices}.
\]

- dodecahedron: \(F = 12, E = 30, V = 20\). \(\chi = 2\)
- tetrahedron: \(F = 4, E = 6, V = 4\). \(\chi = 2\)
- hexahedron: \(F = 6, E = 12, V = 8\). \(\chi = 2\)
- octahedron: \(F = 8, E = 12, V = 6\). So \(\chi = 2\)
- icosahedron:
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- **dodecahedron**: \(F = 12, \ E = 30, \ V = 20. \ \chi = 2\)
- **tetrahedron**: \(F = 4, \ E = 6, \ V = 4. \ \chi = 2\)
- **hexahedron**: \(F = 6, \ E = 12, \ V = 8. \ \chi = 2\)
- **octahedron**: \(F = 8, \ E = 12, \ V = 6. \ So \ \chi = 2\)
- **icosahedron**: \(F = 20, \ E = 30, \ V = 12. \ So \ \chi = 2\)
Euler Characteristic \((F + V - E)\) of Platonic Solids

The Dodecahedron has 12 pentagonal faces (so \(p = 5\) edges on each face), and \(q = 3\) edges on each vertex.

\[
\frac{5 \cdot 12}{2} = 30 \text{ edges, } \frac{2 \cdot 30}{3} = 20 \text{ vertices.}
\]

- **Dodecahedron:** \(F = 12, E = 30, V = 20\). \(\chi = 2\)
- **Tetrahedron:** \(F = 4, E = 6, V = 4\). \(\chi = 2\)
- **Hexahedron:** \(F = 6, E = 12, V = 8\). \(\chi = 2\)
- **Octahedron:** \(F = 8, E = 12, V = 6\). So \(\chi = 2\)
- **Icosahedron:** \(F = 20, E = 30, V = 12\). So \(\chi = 2\)

In all cases, \(\chi = 2\)! Why?
A Theorem for the Euler Characteristic

For the surface of any convex polyhedron having F faces, E edges, and V vertices, $\chi = F + V - E = 2$.

(“Convex” means any line segment joining two points on the polyhedron lies completely inside it.)
A Theorem for the Euler Characteristic

For the surface of any convex polyhedron having F faces, E edges, and V vertices, $\chi = F + V - E = 2$.

(“Convex” means any line segment joining two points on the polyhedron lies completely inside it.)

This is known as Euler’s Polyhedron Formula.
A Theorem for the Euler Characteristic

For the surface of any convex polyhedron having F faces, E edges, and V vertices, $\chi = F + V - E = 2$.

(“Convex” means any line segment joining two points on the polyhedron lies completely inside it.)

This is known as Euler’s Polyhedron Formula.
Proving Euler’s Polyhedron Formula with Charges

- Position the polyhedron so that no edge is horizontal.
- There is one top vertex T, and one bottom vertex B.
Proving Euler’s Polyhedron Formula with Charges

- Position the polyhedron so that no edge is horizontal.
- There is one top vertex T, and one bottom vertex B.
- Place a “+” on each vertex or face, and a “−” on each edge.
Proving Euler’s Polyhedron Formula with Charges

- Position the polyhedron so that no edge is horizontal.
- There is one top vertex T, and one bottom vertex B.
- Place a “+” on each vertex or face, and a “−” on each edge.
- If a charge has a face immediately counterclockwise (viewed from the top), push it onto that face. (Charges in front go left; charges in back go right.)
Proving Euler’s Polyhedron Formula with Charges

- Position the polyhedron so that no edge is horizontal.
- There is one top vertex T, and one bottom vertex B.
- Place a “$+$” on each vertex or face, and a “$-$” on each edge.
- If a charge has a face immediately counterclockwise (viewed from the top), push it onto that face. (Charges in front go left; charges in back go right.)
Proving Euler’s Polyhedron Formula with Charges

- Position the polyhedron so that no edge is horizontal.
- There is one top vertex T, and one bottom vertex B.
- Place a “$+$” on each vertex or face, and a “$−$” on each edge.
- If a charge has a face immediately counterclockwise (viewed from the top), push it onto that face. (Charges in front go left; charges in back go right.)
- T and V have no face, all others do. On each face, the sum is 0.
There Can Be Only Five!

How do we know these are the only five platonic solids?
There Can Be Only Five!

How do we know these are the only five platonic solids?

From Euler’s Characteristic Formula, we know that
\[F + V - E = 2 > 0. \]
There Can Be Only Five!

How do we know these are the only five platonic solids?

From Euler’s Characteristic Formula, we know that
\[F + V - E = 2 > 0. \]

If each face meets \(p \) edges, and each vertex meets \(q \) edges, we can write

\[
F = \frac{2E}{p} \quad \text{and} \quad V = \frac{2E}{q}.
\]
There Can Be Only Five!

How do we know these are the only five platonic solids?

From Euler’s Characteristic Formula, we know that
\[F + V - E = 2 > 0. \]

If each face meets \(p \) edges, and each vertex meets \(q \) edges, we can write
\[
F = \frac{2E}{p} \quad \text{and} \quad V = \frac{2E}{q}.
\]

So we have
\[
\frac{2E}{p} + \frac{2E}{q} - E = 2 > 0.
\]
Continuing the calculation...

\[\frac{2E}{p} + \frac{2E}{q} - E > 0 \]
Continuing the calculation...

\[
\frac{2E}{p} + \frac{2E}{q} - E > 0
\]

\[
\frac{1}{p} + \frac{1}{q} - \frac{1}{2} > 0
\]
Continuing the calculation...

\[
\frac{2E}{p} + \frac{2E}{q} - E > 0
\]

\[
\frac{1}{p} + \frac{1}{q} - \frac{1}{2} > 0
\]

\[
\frac{1}{p} + \frac{1}{q} > \frac{1}{2}
\]
Continuing the calculation...

$$\frac{2E}{p} + \frac{2E}{q} - E > 0$$

$$\frac{1}{p} + \frac{1}{q} - \frac{1}{2} > 0$$

$$\frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$

Now, p and q must both be larger than 2.
The only possible \((p, q)\) pairs:

- \(p = 3, \ q = 3 \quad \frac{1}{3} + \frac{1}{3} \quad \text{Tetrahedron}\)
The only possible \((p, q)\) pairs:

- \(p = 3, q = 3\) — \(\frac{1}{3} + \frac{1}{3}\) — Tetrahedron —

- \(p = 4, q = 3\) — \(\frac{1}{4} + \frac{1}{3}\) — Hexahedron —
The only possible \((p, q)\) pairs:

- \(p = 3, q = 3\) — \(\frac{1}{3} + \frac{1}{3}\) — Tetrahedron —
- \(p = 4, q = 3\) — \(\frac{1}{4} + \frac{1}{3}\) — Hexahedron —
- \(p = 3, q = 4\) — \(\frac{1}{3} + \frac{1}{4}\) — Octahedron —
The only possible \((p, q)\) pairs:

- \(p = 3, q = 3\) — \(\frac{1}{3} + \frac{1}{3}\) — Tetrahedron —

- \(p = 4, q = 3\) — \(\frac{1}{4} + \frac{1}{3}\) — Hexahedron —

- \(p = 3, q = 4\) — \(\frac{1}{3} + \frac{1}{4}\) — Octahedron —

- \(p = 5, q = 3\) — \(\frac{1}{5} + \frac{1}{3}\) — Dodecahedron —
The only possible \((p, q)\) pairs:

- \(p = 3, q = 3\) — \(\frac{1}{3} + \frac{1}{3}\) — Tetrahedron —
- \(p = 4, q = 3\) — \(\frac{1}{4} + \frac{1}{3}\) — Hexahedron —
- \(p = 3, q = 4\) — \(\frac{1}{3} + \frac{1}{4}\) — Octahedron —
- \(p = 5, q = 3\) — \(\frac{1}{5} + \frac{1}{3}\) — Dodecahedron —
- \(p = 3, q = 5\) — \(\frac{1}{3} + \frac{1}{5}\) — Icosahedron —
My Favorite Modern Application of Platonic Solids

Because they make great dice, many modern board games use regular polyhedra for dice. So if you want your own set of platonic solids, you have options in many materials, colors, and designs.
Can you spot the non-platonic solid?
Print, Cut, and Fold Your Own Platonic Solids!

Visit http://www.learner.org/interactives/geometry/platonic.html For Print and Fold instructions to make your own Platonic Solids!
References

- A ton of great information can be found on WikipediA at:
 - https://en.wikipedia.org/wiki/Platonic_solid
 - https://en.wikipedia.org/wiki/Mysterium_Cosmographicum
 - https://en.wikipedia.org/wiki/Euler_characteristic

Thank you!