
Alkanes

Acyclic alkanes have the general molecular formula C_nH_{2n+2} and are said to be *saturated*, *i.e.*, for a given # of carbon atoms alkanes have the maximum # of hydrogens possible – no double or triple bonds.

Let's meet some acyclic members of the clan.

CH₄: methane.

C₂H₆: ethane.

C₃H₈: propane.

C₄H₁₀: the butanes; 2 constitutional isomers.

 C_5H_{12} : the pentanes; 3 constitutional isomers.

C₆H₁₄: the hexanes; 5 constitutional isomers.

C₇H₁₆: the heptanes; 9 constitutional isomers.

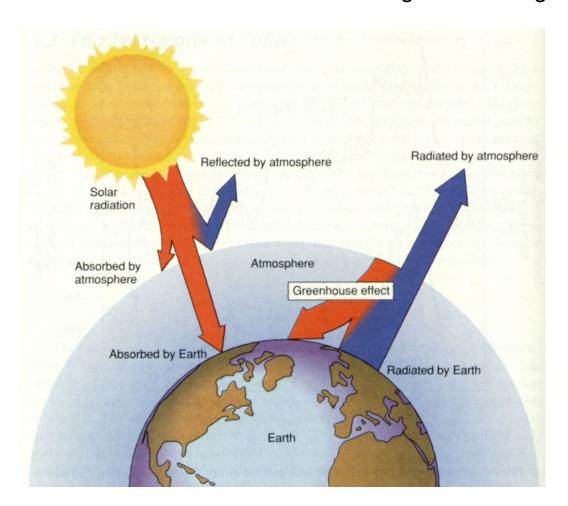
 C_8H_{18} : the octanes.

 C_9H_{20} : the nonanes.

 $C_{10}H_{22}$: the decanes; 75 constitutional isomers

theoretically possible.

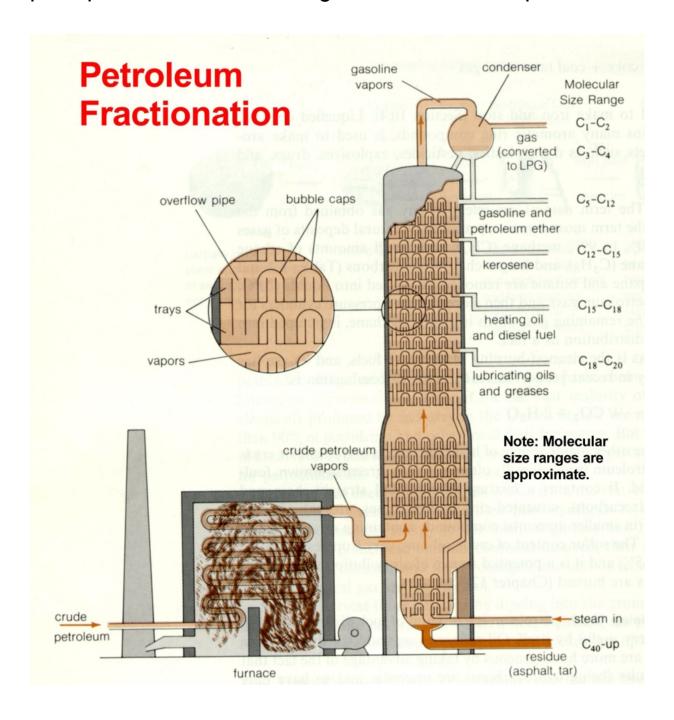
 $C_{20}H_{42}$: the eicosanes; 366,319 constitutional isomers theoretically possible (not all could be made; in some the atoms would be too close to each other for the molecule to be stable [steric hindrance]).


Sources of Alkanes

Not usually synthesized; isolated from natural materials.

Methane — CH₄ — simplest alkane — combustible gas.

An end-product of the anaerobic decay of plants, found in —


- marsh gas

- □ natural gas
 □ produced by anaerobic decay of prehistoric microorganisms
 □ clean source of heat
 □ odorless
- firedamp coal mines miners' (Davy) safety lamp

Sources of Other Alkanes —

principal source = natural gas & distillation of petroleum

<u>Fraction</u>	<u>Distillation</u> <u>Temperature</u>	Number of Carbons
Gas	<20°C	1 - 4

Natural gas is mainly methane. Bottled gas is usually mainly propane; sometimes butane.

Ligroin 20-100°C 5 - 7

Gasoline 30-200°C 5 -10*

Kerosine 175-325°C 12-18

Fuel Oil >275°C 12 & up

Lubricating Oil non-volatile, vacuum dist.

Asphalt non-volatile

^{*}Seasonal blend --- relatively more 5 & 6 carbon cpds. in winter, more 9 & 10 carbon cpds. in summer.

For gasoline "OCTANE NUMBER" is important.

The higher the octane number, the less a gasoline motor will tend to "knock."

Octane numbers – heptane = 0, engines knock badly; 2,2,4-trimethylpentane ("isooctane") = 100, good fuel.

The octane number of a gasoline blend is the % of 2,2,4-trimethylpentane in a mixture of the above two compounds which has the same knocking properties as the gasoline;

eg gasoline with a rating of 87 has the same knocking properties as a mixture which is 87%

2,2,4-trimethylpentane and 13% heptane.

The octane rating of a gasoline is improved by—

- 1) Reforming –
 Pt, heat
 Aliphatic ——>More highly branched aliphatic + Aromatic.
- 2) Cracking breaks larger molecules into gasoline size, mostly branched.
- 3) Additives -
 - © tetraethyllead, Pb(CH₂CH₃)₄ ©