## Quiz 4

## Sample problems involving Clausius-Clapeyron Equation

1. A particular compound has an enthalpy of vaporization of $28900 \mathrm{~J} / \mathrm{mol}$. At 278 K it has a vapor pressure of 103 mmHg . What is its vapor pressure at $309 \mathrm{~K} ?(R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}))$
a) $\quad 29.4 \mathrm{mmHg}$
b) 194 mmHg
c) $\quad 107 \mathrm{mmHg}$
d) $\quad 99.5 \mathrm{mmHg}$
e) 361 mmHg
2. A liquid has an enthalpy of vaporization of $30.8 \mathrm{~kJ} / \mathrm{mol}$. At 273 K it has a vapor pressure of 102 mmHg . What is the normal boiling point of this liquid? $(R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}))$
a) 273 K
b) $\quad 320 \mathrm{~K}$
c) 292 K
d) 238 K
e) 257 K
3. In a certain mountain range, water boils at $92^{\circ} \mathrm{C}$. What is the atmospheric pressure under these conditions? The enthalpy of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.7 \mathrm{~kJ} / \mathrm{mol} .(R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}))$
a) 570 mmHg
b) 1010 mmHg
c) 243 mmHg
d) 237 mmHg
e) 2380 mmHg
4. For a particular liquid, raising its temperature from 298 K to 318 K causes its vapor pressure to double. What is the enthalpy of vaporization of this liquid? $(R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}))$
a) $115 \mathrm{~kJ} / \mathrm{mol}$
b) $\quad 288 \mathrm{~kJ} / \mathrm{mol}$
c) $\quad 27.3 \mathrm{~kJ} / \mathrm{mol}$
d) $2.53 \mathrm{~kJ} / \mathrm{mol}$
e) $270 \mathrm{~kJ} / \mathrm{mol}$
5. Knowing that $\Delta H_{\text {vap }}$ for water is $40.7 \mathrm{~kJ} / \mathrm{mol}$, calculate $P_{\text {vap }}$ of water at $37^{\circ} \mathrm{C}$.
a) $\quad 6.90$ torr
b) $\quad 12.4$ torr
c) $\quad 18.7$ torr
d) $\quad 25.4$ torr
e) 52.6 torr
6. What is the enthalpy of vaporization of a compound that has a vapor pressure of 157 mmHg at 253 K and 0.358 mmHg at $191 \mathrm{~K} ?(R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol}))$
a) $\quad 3.13 \mathrm{~kJ} / \mathrm{mol}$
b) $0.838 \mathrm{~kJ} / \mathrm{mol}$
c) $815 \mathrm{~kJ} / \mathrm{mol}$
d) $\quad 39.4 \mathrm{~kJ} / \mathrm{mol}$
e) $\quad 389 \mathrm{~kJ} / \mathrm{mol}$
