Name:

Section \qquad
CHEM 226: Elementary Organic Chemistry Exam 2 spring 2013

1. How many stereogenic carbons are produced in the product of the following sequence of reactions?

2. Treating 1-butene with HBr produces a product with one stereogenic carbon. What is the name of the product?

A) 2-bromo-1-butene
C) (R)-2-bromobutane

2 -brows butane)
D) (S)-2-bromobutane

E) Both C and D in equal amounts
E) Both C and D in equal amounts
3. What is the name of the product formed from the following reaction?

A) bromocyclopentane
B) 1,1-dibromocyclopentane

C) cis-1,2-dibromocyclopentane
D) trans-1,2-dibromocyclopentane
E) 1,1-dibromocyclopentene
4. Addition of H_{2} to 2-pentyne in the presence of the Lindlar's catalyst will produce:

5. What is the final product of adding 1 mole of each reactant in the following sequence?

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{HCl}} \xrightarrow{\mathrm{HBr}} \rightarrow
$$

A) propyl chlorideD) 2-bromo-2-chloropropane
B) propyl bromide
E) 2,2-dibromopropane
C) 1-bromo-2-chloropropane

6. What type of carbocation will form from the addition of a H^{+}to 2-methylpropene?

A) $\mathrm{H}_{3} \mathrm{C}^{+}$
B) 1°
C) 2°
D) 3°
E) Allyl
7. Upon ozonolysis which alkene will give only acetone, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$?
A) 2,3-dimethyl-2-butene
B) 2,2-dimethyl-2-butene
C) 3-hexene
D) 2-methyl-2-pentene

8. What is the percent s character in an sp^{2} hybrid orbital?
A) 25%
B) 33%
C) 50%
D) 67%
E) 75%

$$
s \text { character in } s p^{3}=\frac{1}{3} \times 100=33 \%
$$

9. The triple bond in ethyne is made up of
A) two pi bonds and a sigma bond, each formed by a lateral overlap of two p orbitals.
B) a sigma bond formed by overlap of two s orbitals and two pi bonds, each formed by lateral overlap of two p orbitals.
C) a sigma bond formed by end-on overlap of two sp^{2} orbitals and a pi bond formed by lateral overlap of two p orbitals.
D) two pi bonds, each formed by lateral overlap of two p orbitals, and a sigma bond formed by end-on overlap of two sp orbitals.
E) two pi bonds, each formed by end-on overlap of two p orbitals, and a sigma bond formed by lateral overlap of two sp orbitals.
10. Bending vibrations in the infare region occur at:
A) $3000 \mathrm{~cm}^{-1}$

B) $2200 \mathrm{~cm}^{-1}$
C) $1700 \mathrm{~cm}^{-1}$
D) below $1400 \mathrm{~cm}^{-1}$
E) over $3000 \mathrm{~cm}^{-1}$

Short Answer Questions

11. The Diels-Alder reaction is very important in the synthesis of six-membered rings. Draw the reagents that can be used to synthesize the product shown by this method?

12. How many peaks would you expect in the proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of 3bromopentane?

13. A monochloroalkane shows two parent ion peaks m / z at 92 and 94 . What is the molecular formula? $\left({ }^{35} \mathrm{Cl}\right.$ and ${ }^{37} \mathrm{Cl}$ are the most common isotopes of chlorine)

$$
\begin{array}{c|c}
C_{n} H_{2 n+1} C l \\
12 n+2 n+1+35=92 \\
14 n+36=92 \\
14 n=56
\end{array} \quad \Rightarrow n=\frac{56}{1+}=4
$$

14. A student lost the labels of two compounds and was required to run experiments to distinguish and identify them. She took an IR spectrum of both compounds A and B and both showed a broad band in the 3200 to $3500 \mathrm{~cm}^{-1}$ region of their IR spectrum? She then took both ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, and compound A had four peaks, while compound B had two peaks in both NMR. Identify compounds A and B.
Both had-OH groups.

$$
A-4 \text { peaks }
$$

13c. NMR

B

15. What is the molecular geometry of an alkenes like acetylene and a hydrogen cyanide $\mathrm{HC} \equiv \mathrm{N} \quad \mathrm{HC} \equiv \mathrm{CH}$

$$
\begin{gathered}
H-C \equiv c-H \\
\text { sp sp }
\end{gathered}
$$

16. How many hydrogen are there in an alkyne with 13 carbons?

$$
C_{n} H_{2 n-2}
$$

17. The ${ }^{1} \mathrm{H}$ NMR spectrum of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are shown below. Match the spectra with the correct molecule.

18. A compound, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$, has an intense IR band at $1725 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are shown below. Deduce the structure of the compound.

For questions 19-25, fill in the missing reagents) and the major product(s) for the following reactions
19.

20.

21.

22. $\xlongequal{\square} \xrightarrow{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}, \mathrm{HgSO}_{4}}$

23.

24.

25.

Table 12.2 Typical ${ }^{1} \mathrm{H}$ Chemical Shifts (Relative to Tetramethylsilane)

Type of 'H	δ (ppm)	Type of ${ }^{\prime} \mathrm{H}$	δ (ppm)
$\mathrm{C}-\mathrm{CH}_{3}$	0.85-0.95	$-\mathrm{CH}_{2}-\mathrm{F}$	4.3-4.4
$\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$	1.20-1.35	$-\mathrm{CH}_{2}-\mathrm{Br}$	3.4-3.6
		$-\mathrm{CH}_{2}-\mathrm{I}$	3.1-3.3
	1.40-1.65	$\mathrm{CH}_{2}=\mathrm{C}$	4.6-5.0
$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}$	1.6-1.9	$-\mathrm{CH}=\mathrm{C}$	5.2-5.7
CH_{3}-Ar	2.2-2.5	$\mathrm{Ar}-\mathrm{H}$	6.6-8.0
	2.1-2.6	$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	2.4-2.7
$\mathrm{CH}_{3}-\mathrm{N}^{\prime}$	2.1-3.0		9.5-9.7
$\mathrm{CH}_{3}-\mathrm{O}-$	3.5-3.8		10-13
$-\mathrm{CH}_{2}-\mathrm{Cl}$	3.6-3.8	$\mathrm{R}-\mathrm{OH}$	0.5-5.5
$-\mathrm{CHCl}_{2}$	5.8-5.9	$\mathrm{Ar}-\mathrm{OH}$	48

Table 12.4 Infrared Stretching Frequencies of Some Typical Bonds

Bond type	Group	Class of compound	Frequency range (cm^{-1})
single bonds to hydrogen	$\mathrm{C}-\mathrm{H}$	alkanes	2850-3000
	$=\mathrm{C}-\mathrm{H}$	alkenes and aromatic compounds	3030-3140
	$\equiv \mathrm{C}-\mathrm{H}$	alkynes	3300
	$\mathrm{O}-\mathrm{H}$	alcohols and phenols	3500-3700 (free) 3200-3500 (hydrogenbonded)
	$\mathrm{O}-\mathrm{H}$	carboxylic acids	2500-3000
	$\mathrm{N}-\mathrm{H}$	amines	3200-3600
	S-H	thiols	2550-2600
double bonds	$\mathrm{C}=\mathrm{C}$	alkenes	1600-1680
	$\mathrm{C}=\mathrm{N}$	imines, oximes	1500-1650
	$\mathrm{C}=0$	aldehydes, ketones, esters, acids	1650-1780
triple bonds	$\mathrm{C} \equiv \mathrm{C}$	alkynes	2100-2260
	$\mathrm{C} \equiv \mathrm{N}$	nitriles	2200-2400

