Name: Answer (Ley	Section
CI Exam 2 spring 201	HEM 226: Elementary Organic Ch 3	nemistry March 20, 2013
How many stereogenic oreactions?	carbons are produced in the produc	ct of the following sequence of
$\frac{Br_2}{CCl_4}$	A) 1 B) 2 C) 3 D) 4 E) 5 generated	B
	IDs produces a product with one of	since van proceeds via carbocation luternediate, the reaction produces a vacanic mixture (Rand S
A) 2-bromo-1-bute B) 1-bromobutane C) (R)-2-bromobut D) (S)-2-bromobut E) Both C and D in	ane E	a vacanic menture (Rand S 2-bronno butane)
3. What is the name of the	product formed from the following	reaction?
Br ₂ CC	Br train	ns-1, 2-dibromokydopentane
 A) bromocyclopent B) 1,1-dibromocycl C) cis-1,2-dibromocycl D) trans-1,2-dibromocycl E) 1,1-dibromocycl 	lopentane cyclopentane nocyclopentane	
4. Addition of H ₂ to 2-penty	ne in the presence of the Lindlar's	catalyst will produce:
Lind	Tyst H H C B)) pentane) 1-pentene) <i>cis-</i> 2-pentene) <i>trans-</i> 2-pentene
5. What is the final product	of adding 1 mole of each reactant	in the following sequence?
CH₃C≡CH	HC1 HBr	?
A) propyl chlorideB) propyl bromideC) 1-bromo-2-chlor	ropropane E)	2-bromo-2-chloropropane 2,2-dibromopropane
CH3-C	=c+ -> C+3 -c=0	CH2 +BY CH3-C-CH3 1 BY 2phromo-2-chloropropena

6. What ty	ype of carbocation will form from the addition of a H ⁺ to 2-methylpropene?
HO &)	tertary carbocation
A) B) C) D) E)	1° 2°
7. Upon c	ozonolysis which alkene will give only acetone, (CH ₃) ₂ C=O?
B) C) D)	2-methyl-2-pentene $C = C$
8. What is	s the percent s character in an sp ² hybrid orbital?
B) C)	25% 33% 50% 67% 75%
9. The trip	ple bond in ethyne is made up of
A) B)	two pi bonds and a sigma bond, each formed by a lateral overlap of two p orbitals. a sigma bond formed by overlap of two s orbitals and two pi bonds, each formed by lateral overlap of two p orbitals.
C)	a sigma bond formed by end-on overlap of two sp ² orbitals and a pi bond formed by lateral overlap of two p orbitals.
D)	two pi bonds, each formed by lateral overlap of two p orbitals, and a sigma bond formed
E)	by end-on overlap of two sp orbitals. we pi bonds, each formed by end-on overlap of two p orbitals, and a sigma bond formed by lateral overlap of two sp orbitals.
10. Bendin	g vibrations in the infared region occur at: Often Shows in the finger print region 3000 cm ⁻¹
	2200 cm ⁻¹ 1700 cm ⁻¹ below 1400 cm ⁻¹

Short Answer Questions

11. The Diels-Alder reaction is very important in the synthesis of six-membered rings. Draw the reagents that can be used to synthesize the product shown by this method?

12. How many peaks would you expect in the proton decoupled ¹³C NMR spectrum of 3-bromopentane?

13. A monochloroalkane shows two parent ion peaks m/z at 92 and 94. What is the molecular formula? (^{35}CI and ^{37}CI are the most common isotopes of chlorine)

$$C_{n}H_{2n+1}Cl = 92$$
 $\Rightarrow h = \frac{56}{14} = 4$
 $14n + 36 = 92$
 $14n + 36 = 92$
 $C_{4}H_{q}Cl$
 $C_{4}H_{q}Cl$

14. A student lost the labels of two compounds and was required to run experiments to distinguish and identify them. She took an IR spectrum of both compounds A and B and both showed a broad band in the 3200 to 3500 cm⁻¹ region of their IR spectrum? She then took both ¹H NMR and ¹³C NMR spectra, and compound A had four peaks, while compound B had two peaks in both NMRs. Identify compounds A and B.

15. What is the molecular geometry of an alkynes like acetylene and a hydrogen cyanide HC≡N HC≡CH

$$C_n H_{2n-2}$$

$$C_1 H_{2n-2}$$

$$C_1 H_{2n-2}$$

$$C_1 H_{2n-2}$$

$$C_1 H_{2n-2}$$

17. The 1H NMR spectrum of benzene (C_6H_6) and cyclohexane (C_6H_{12}) are shown below. Match the spectra with the correct molecule.

18. A compound, $C_5H_{10}O$, has an intense IR band at 1725 cm⁻¹. Its ¹H NMR and ¹³C NMR are shown below. Deduce the structure of the compound.

For questions 19-25, fill in the missing reagent(s) and the major product(s) for the following reactions

19. NaNH₂, liquid NH₃

$$C = C Na + NH_3$$
20.
$$H_2 \quad \text{Lindlar's catalyst}$$

$$Epoxidaher$$
21.
$$H_2O, H^*, HgSO_4$$
22.
$$H_2O_2 / OH$$

$$H_3 \cdot THF$$

$$H_2O_2 / OH$$

$$H_4 \quad O_3$$
24.
$$C = C Na + NH_3$$

Table 12.2 Typical ¹ H Chemical Shifts (Relative to Tetramethylsilane)					
Type of ¹ H	δ (ppm)	Type of ¹ H	δ (ppm)		
C—CH ₃	0.85-0.95	-CH ₂ -F	4.3-4.4		
C—CH ₂ —C	1.20-1.35	—CH ₂ —Br	3.4-3.6		
		-CH ₂ -I	3.1-3.3		
C					
c-cH-c	1.40-1.65	CH ₂ =C	4.6-5.0		
$CH_3-C=C$	1.6-1.9	-CH=C	5.2-5.7		
CH ₃ —Ar	2.2-2.5	Ar—H	6.6-8.0		
$CH_3 - C = 0$	2.1-2.6	-c = c - H	2.4-2.7		
,		0			
CH ₃ -N	2.1-3.0	— С — H	9.5-9.7		
,		0			
CH ₂ -O-	3.5-3.8	$-\overset{0}{\overset{\parallel}{C}}-OH$	10-13		
-CH ₂ -CI	3.6-3.8	R—OH	0.5-5.5		
-CHCI ₂	5.8-5.9	Ar—OH	4-8		

Table 12.4 Infrared Stretching Frequencies of Some Typical Bonds				
Bond type	Group	Class of compound	Frequency range (cm ⁻¹)	
single bonds to hydrogen	С—Н	alkanes	2850-3000	
	=C−H	alkenes and aromatic compounds	3030-3140	
	≡C—H	alkynes	3300	
	0—H	alcohols and phenois	3500–3700 (free) 3200–3500 (hydrogen- bonded)	
	0-H	carboxylic acids	2500-3000	
	N-H	amines	3200-3600	
	S—H	thiols	2550-2600	
double bonds	C = C	alkenes	1600-1680	
	C=N	imines, oximes	1500-1650	
	C=0	aldehydes, ketones, esters, acids	1650-1780	
triple bonds	C≡C	alkynes	2100-2260	
	CIN	nitriles	2200-2400	