Instructor: Dr. James Ruffo
Office: 329 Fitzelle Hall
Phone: 607.436.3653
email: ruffojv@oneonta.edu
webpage: http://employees.oneonta.edu/ruffojv/335
Office Hours: Monday & Wednesday 12-13, Tuesday & Thursday 11-12

Time: Monday, Wednesday & Friday 13:00-13:50
Room: 200 Schumacher Hall

Catalog Description: A postulation approach to some Euclidean and non-Euclidean geometries. Topics include incidence and separation properties of planes and space, constructions with compass and straightedge, geometric inequalities, the parallel postulate, similarity theorems, circles, properties of triangles, and metric relationships.

Goals: This class will cover the development and history of Geometry from the work of Euclid through the discovery of hyperbolic geometry by Gauss, J. Bolyai, and Lobachevsky, and will explore the mathematical and philosophical consequences of this revolutionary discovery. In the process, and through the completion of homeworks, quizzes, and exams, the student will achieve the following goals:

- Enhance abstract and critical reasoning skills.
- Communicate mathematical ideas effectively.
- Demonstrate an understanding of key mathematical concepts.

SUNY General Education Attributes: LA

SUNY Learning Outcome: Students will show competence in the following quantitative reasoning skills: arithmetic, algebra, geometry, data analysis, and quantitative reasoning.

Grading Policy: Your grade will be determined by the following:

- Two midterm exams, each worth 20% of your grade.
- The final exam, cumulative and worth 25% of your grade.
- Class participation, 10% of your grade. To receive full credit, it suffices to attend every class (unless excused) and regularly contribute to the discussion.
- Homework, 25% of your grade. Homework will be assigned frequently, and collected occasionally.
Your final grade will be assigned according to the following scheme:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92 ≤ x ≤ 100</td>
</tr>
<tr>
<td>A−</td>
<td>90 ≤ x < 92</td>
</tr>
<tr>
<td>B+</td>
<td>87 ≤ x < 90</td>
</tr>
<tr>
<td>B</td>
<td>82 ≤ x < 87</td>
</tr>
<tr>
<td>B−</td>
<td>80 ≤ x < 82</td>
</tr>
<tr>
<td>C+</td>
<td>77 ≤ x < 80</td>
</tr>
<tr>
<td>C</td>
<td>72 ≤ x < 77</td>
</tr>
<tr>
<td>C−</td>
<td>70 ≤ x < 72</td>
</tr>
<tr>
<td>D+</td>
<td>67 ≤ x < 70</td>
</tr>
<tr>
<td>D</td>
<td>62 ≤ x < 67</td>
</tr>
<tr>
<td>D−</td>
<td>60 ≤ x < 62</td>
</tr>
<tr>
<td>E</td>
<td>0 ≤ x < 60</td>
</tr>
</tbody>
</table>

Course Outline: We will cover Chapters 1 through 3 from the text. Below is a tentative schedule.

16 - 23 Jan Chapter 1: Euclid’s Geometry
25 Jan - 1 Feb Chapter 2: Logic
4 - 15 Feb Chapter 3: Hilbert’s Axioms
18 - 22 Feb No class
25 Feb - 29 Feb Chapter 4: Neutral Geometry
3 Mar Exam 1 review
5 Mar Exam 1
7 Mar - 12 Mar Chapter 4, continued
14 - 17 Mar Chapter 5: History of the Parallel Postulate
19 Mar - 21 Mar Chapter 6: The discovery of non-Euclidean Geometry
24 - 28 Mar No class
31 Mar - 4 Apr Chapter 6, continued
7 Apr Exam 2 review
9 Apr Exam 2
11 - 18 Apr Chapter 7: Independence of the Parallel Postulate
21 - 30 Apr Chapter 8: Philosophical Implications
2 - 5 May Final Exam review
12 May, 14:00 - 16:30 Final Exam

Attendance: Please come to class regularly and on time. Any material missed due to an unexcused absence is the responsibility of the student.

Students missing 25% or more of class, any time from the second week of class up until the last day to withdraw from an individual course may be removed from the course by the instructor.

A word of advice: The best way to learn mathematics (or anything else) is to actively engage in the subject, by working out problems and discussing ideas with others. You are strongly encouraged to use our time together in class for this purpose. Read the relevant sections of the book before we cover it in class, so that you can ask questions. Not only will this help you learn the material, it will help your grade (see “Grading Policy” above).