Chemistry 111-2012 Vining; 9/24/2012 Exam #1 Q 1-20 = 4 points; Q 21-22 10 points each NAME: ANSWER KEY Exam Version 24

1. You make some tea using a tea bag. Some tea dissolves, but some of the little leaves leak out and are floating around in the liquid. The result is a:

heterogeneous mixture

- 2. The atomic number of Si is: 14
- 3. The mass number of the only stable isotope of manganese, Mn is: 55
- **4.** The species $36S^{2-}$ has: 16 protons, 20 neutrons, and 18 electrons.
- 5. An atom becomes a cation by: losing electrons

An atom becomes an anion by: gaining electrons

- 6. Which ionic compound listed below does not have a correct formula? SrPO₄
- 7. The elements C and Si are in the same periodic **group** and the elements O and N are in the same periodic **period**.
- 8. The element iridium has two staple isotopes:
 - 191 lr Mass = 190.96 amu 193 lr Mass = 192.96 amu

Which isotope is more abundant?

Ir-193 (the average mass from the periodic table is closer to 192.96 than to 190.96)

- **9.** The relationship between O_2 and O_3 is that they are... **allotropes**
- 10. The molar mass of Ca(NO₃)₂ is 164.1 g/mol
- 11. What kind of compound will be formed between the elements Mg and Br? ionic

12. How many F atoms are there in a 68.9-g sample of F₂? 2.18 x 10²⁴

 $68.9g \ F_2 \times \frac{1mol \ F_2}{38.00g} \times \frac{2mol \ F \ atoms}{1mol \ F_2} \times \frac{6.022 \times 10^{23} \ atoms}{1 \ mol \ F} = 2.18 \times 10^{24} \ atoms$

13. What is the percent mass of carbon (to two significant figures) in C₃H₈O₂? 47%

14. A compound has the empirical formula CH_2O and a molar mass of 120.10 g/mol. What is the molecular formula? $C_4H_8O_4$

15. Consider the reaction, $P_4 + 6 Cl_2 \rightarrow 4 PCl_3$

If 3.5 mol of P₄ react, how many moles of PCl₃ can be formed? 14

$$3.5 \operatorname{mol} P_4 \times \frac{4 \operatorname{mol} PCl_3}{1 \operatorname{mol} P_4} = 14 \operatorname{mol} PCl_3$$

16. An experiment is performed where NaOH is slowly added to 50.0 g FeCl_3 . The reaction that occurs produces Fe(OH)₃. The plot below shows the mass of Fe(OH)₃ produced as a function of the mass of

NaOH added. Choose two correct statements. Circle both on the answer sheet.

17. How many moles of NO_2 are in 19.7 g of NO_2 ? **0.428 mol**

How many moles of CO_2 are in 29.7 g of CO_2 ? **0.675 mol**

18. The formula of ammonium sulfate is: $(NH_4)_2SO_4$

The name of SO_2 is: $\ensuremath{\textit{sulfur dioxide}}$

The formula of ammonium carbonate is: $(NH_4)_2CO_3$

The name of $SO_{3}\ \mbox{is:}\ \mbox{sulfur trioxide}$

 19a.
 Name AlCl₃: aluminum chloride
 19b. Name FeCl₂: iron(II) chloride

 Name MgCl₂: magnesium chloride
 19b. Name FeCl₃: iron(III) chloride

20. Balance the following reaction: $1 C_6 H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2 O_2$

21. Consider the reaction, 4 Cr + 3 O₂ \rightarrow 2 Cr₂O₃

If 75.0 g of Cr are mixed with 25.0 g O_2 , how many grams of Cr_2O_3 can be formed?

$$75.0 \text{ g Cr} \times \frac{1 \text{ mol Cr}}{52.00 \text{ g}} = 1.44 \text{ mol Cr}$$

$$25.0 \text{ g O}_2 \times \frac{1 \text{ mol O}_2}{32.00 \text{ g}} = 0.781 \text{ mol O}_2$$

$$\frac{1.44 \text{ mol Cr}}{4} > \frac{0.781 \text{ mol O}_2}{3} \text{ so O}_2 \text{ is the limiting reactant}$$

$$0.781 \text{ mol O}_2 \times \frac{2 \text{ mol Cr}_2 \text{O}_3}{3 \text{ mol O}_2} = 0.521 \text{ mol Cr}_2 \text{O}_3$$

$$0.521 \text{ mol Cr}_2 \text{O}_3 \times \frac{151.99 \text{ g Cr}_2 \text{O}_3}{1 \text{ mol}} = 79.1 \text{ g Cr}_2 \text{O}_3$$

22. Chemical Analysis: You have a 10.56-gram sample that is a solid mixture of $Cr_2(CO_3)_3$ and Fe_2O_3 . You heat it and the $Cr_2(CO_3)_3$ reacts according to the equation below:

$$Cr_2(CO_3)_3(s) \rightarrow Cr_2O_3(s) + 3 CO_2(g)$$

No reaction occurs to the Fe_2O_3 . After heating, the mass is found to be 8.46 g. What is the mass percent of $Cr_2(CO_3)_3$ in the original mixture?

The mass lost is all due to CO_2 lost, which comes from $Cr_2(CO_3)_3$.

Map:
$$g CO_2 \rightarrow mol CO_2 \rightarrow mol Cr_2(CO_3)_3 \rightarrow g Cr_2(CO_3)_3 \rightarrow percent Cr_2(CO_3)_3$$

 $g CO_2 lost = 10.56 \text{ g} - 8.46 \text{ g} = 2.10 \text{ g CO}_2$
 $2.10 \text{ g CO}_2 \times \frac{1 \mod CO_2}{44.01 \text{ g}} = 0.0477 \mod CO_2$
 $0.0477 \mod CO_2 \times \frac{1 \mod Cr_2(CO_3)_3}{3 \mod CO_2} = 0.0159 \mod Cr_2(CO_3)_3$
 $0.0159 \mod Cr_2(CO_3)_3 \times \frac{284.01 \text{ g } Cr_2(CO_3)_3}{1 \mod} = 4.51 \text{ g } Cr_2(CO_3)_3$
 $\% Cr_2(CO_3)_3 = \frac{4.51 \text{ g } Cr_2(CO_3)_3}{10.56 \text{ g sample}} \times 100 = 42.8\%$