Chemistry 111 – 2015	Name: ANSWER KEY			
Exam #1	September 24, 2015			
$N_A = 6.022 \times 10^{23}$				

1. How many protons, neutrons and electrons are found in an ion of the isotope ${}^{34}S^{2-}$

16 protons18 neutrons18 electrons

2. Define:

Isotopes: Two atoms that have the same atomic number (same number of protons) but different numbers of neutrons (and thus different mass numbers).

Allotropes: Two different molecular forms of an element. Example: O2 and O3

- 3. Elements in the same **group** of the periodic table tend to have similar properties.
- 4. Give formulas for the following:
 ammonium phosphate: (NH₄)₃PO₄ boron trichloride: BCl₃
 disulfur decafluoride: S₂F₁₀ potassium sulfate: K₂SO₄
 5. Name the following:
 MgCl₂ : magnesium chloride S₂O₃ : disulfur trioxide Na₂SO₃ : sodium sulfite AlBr₃ : aluminum bromide
 6. Identify the following compounds as covalent or ionic:

C_2H_6	covalent or ionic	S_2Cl_4	covalent or ionic
Mg(NO ₃) ₂	covalent or ionic	NH ₄ ClO ₄	covalent or ionic

7. How many atoms of hydrogen are found in $8.40 \text{ mol } N_2H_4$?

8.40 mol N₂H₄ × $\frac{4 \text{ mol H}}{1 \text{ mol N}_2\text{H}_4}$ × $\frac{6.022 \times 10^{23} \text{ H atoms}}{1 \text{ mol H}}$ = 2.02×10²⁵ H atoms

8. Balance the following reaction:

 $1 \text{ Al}_2(\text{SO}_3)_3 + 6 \text{ HCl } \rightarrow 2 \text{ AlCl}_3 + 3 \text{ SO}_2 + 3 \text{ H}_2\text{O}$

The first "1" need not be shown.

8. Copper (Cu) has two isotopes. Their masses are:

⁶³Cu = 62.93 aum ⁶⁵Cu = 64.93 amu

Which isotope is present in greater abundance?

⁶³Cu or ⁶⁵Cu

The molar mass of Cu on the periodic table is 63.55 amu. This is much closer to the atomic mass of Cu-63, so Cu-63 must be in greater abundance.

9. Consider the reaction of butane with oxygen:

 $2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O$

If 5.6 mol C₄H₁₀ are reacted with excess oxygen, what amount (in moles) of H₂O can be formed?

5.6 mol C₄H₁₀ ×
$$\frac{10 \text{ mol } \text{H}_2\text{O}}{2 \text{ mol } \text{C}_4\text{H}_{10}} = 28 \text{ mol } \text{H}_2\text{O}$$

10. Why do we use "moles" to describe chemical amounts?

The mole concept allows us to relate atomic and molecular scale properties to the bulk, measureable scale. It allows us to infer things about how molecules act by measuring compounds on the human scale.

11. What is the molar mass of (NH₄)₂SO₃? **116.13 g/mol**

12. Well mixed, filtered salt water represents:

element compound pure substance

homogeneous mixture heterogeneous mixture

Long Answer Questions: You MUST Show All Work

 Some molar masses:
 MgSO4: 120.36 g/mol
 Fe2O3: 159.69 g/mol

Na₂SO₄: 142.04 g/mol

13. Calculate the percent composition of oxygen in MgSO₄.

 $\%Mg = \frac{\text{mass O}}{\text{mass MgSO4}} \times 100 = \frac{4 \times 16.00 \text{ g/mol}}{120.36 \text{ g/mol}} \times 100 = 53.17\%$

14. What is the weight of one gallon of gasoline (in pounds)?

 $1 \text{ gal} \times \frac{3.785 \text{ L}}{1 \text{ gal}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ cm}^3}{1 \text{ mL}} \times \frac{0.72 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ pound}}{454 \text{ g}} = 6.0 \text{ pounds}$

Density = 0.72 g/cm³ 1 gallon = 3.785 L 1 pound = 454 g

15. A **43.09** gram sample of a hydrate of **Na₂SO₄** was heated thoroughly in a porcelain crucible, until its weight remained constant. After heating, **22.82** grams of the anhydrous compound remained. What is the formula of the compound?

The key is to determine the number of waters of hydration per Na₂SO₄ unit.

hydration number = $\frac{\# H_2O \text{ molecules}}{Na_2SO_4} = \frac{\text{mol } H_2O}{\text{mol } Na_2SO_4}$

Mass loss upon heating = mass H_2O = 43.09 g – 22.82 g = 20.27 g H_2O

Mass of sample after heating = mass of anhydrous Na₂SO₄ = 22.82 g Na₂SO₄

$$mol H_{2}O = \frac{20.27 \text{ g } \text{H}_{2}O}{18.02 \text{ g } \text{H}_{2}O} = 1.125 \text{ mol } \text{H}_{2}O$$
$$mol Na_{2}SO_{4} = \frac{22.82 \text{ g } \text{Na}_{2}SO_{4}}{142.04 \text{ g } \text{Na}_{2}SO_{4}} = 0.1607 \text{ mol } \text{Na}_{2}SO_{4}$$
$$hydration \# = \frac{1.125 \text{ mol } \text{H}_{2}O}{0.1607 \text{ mol } \text{Na}_{2}SO_{4}} = 7$$

Formula = $Na_2SO_4 \cdot 7H_2O$

16. A compound is found to contain **43.64% phosphorus** and **56.35** % **oxygen** by weight. What is the empirical formula?

mol P = 43.64 g P×
$$\frac{1 \text{ mol P}}{30.97 \text{ g P}}$$
 = 1.409 mol P
mol O = 56.35 g O× $\frac{1 \text{ mol O}}{16.00 \text{ g O}}$ = 3.521 mol O
ratio of atoms = $\frac{3.521 \text{ mol O}}{1.409 \text{ mol P}}$ = 2.50 = $2\frac{1}{2} = \frac{5 \text{ O}}{2 \text{ P}}$

Empirical Formula = P_2O_5

17. Metallic iron is made by the reaction of iron oxide with carbon:

$$2 \operatorname{Fe_2O_3(s)} + 3 \operatorname{C(s)} \rightarrow 4 \operatorname{Fe(s)} + 3 \operatorname{CO_2(g)}$$

If one pound (454 g) Fe₂O₃ are reacted with excess C, what mass of CO₂ is formed?

 $454 \text{ g Fe}_{2}\text{O}_{3} \times \frac{1 \text{ mol Fe}_{2}\text{O}_{3}}{159.69 \text{ g Fe}_{2}\text{O}_{3}} \times \frac{3 \text{ mol CO}_{2}}{2 \text{ mol Fe}_{2}\text{O}_{3}} \times \frac{44.01 \text{ gCO}_{2}}{1 \text{ mol CO}_{2}} = 188 \text{ g CO}_{2}$

18. A compound is found to have the empirical formula C_4H_5 . It's mass spectrum is below.

a. What is the molecular formula of the compound? C_8H_{10}

b. What leads to the peak labeled "B"? Give a one-sentence general description.

Some molecules of C₈H₁₀ contain heavier isotopes of H or C.

c. What leads to the peak labeled "C"? Describe in one or two sentences. You are looking for the general cause, not the specific chemical entity.

Some of the molecules decompose and fragment into smaller pieces during the experiment, and show up smaller, lighter species.