Chem 112-2014

Name:

Vining- Exam #1

February 7, 2014

1. Specific heat capacity is

a) the quantity of heat needed to change the temperature of 1.00 g of a substance by 1.00 K.

b) the quantity of heat needed to change the temperature of 1.00 g of a substance by 4.184 K.

c) the mass of a substance that 1.00 J of energy will heat by 1.00 K.

d) the temperature change undergone when 1.00 g of a substance absorbs 4.184 J.

e) the maximum amount of heat that 1.00 g of a substance may absorb without decomposing.

2. If 245 J is required to change the temperature of 14.4 g of chromium by 38.0 K, what is the specific heat capacity of chromium?

a) 0.448 J/g·K	b) 2.23 J/g·K	c) 4.18 J/g∙K	d) 4.68 J/g∙K	e) 92.8 J/g·K
,	,	,	,	, , , , ,

3. What quantity of energy is required to heat 50.0 g of water from 25.0 °C to 95 °C?

a) 14600 J b) 19900 c) 3500 J d) 12800 J e) 333 J

4. Determine the heat of condensation of titanium(IV) chloride,

 $TiCl_4(g) \rightarrow TiCl_4(\vartheta) \qquad \Delta H^\circ = ?$

given the enthalpies of reaction below.

$Ti(s) + 2 Cl_2(g) \rightarrow TiCl_4(\vartheta)$	∆ <i>H</i> ° = -804.2 kJ
$Ti(s) + 2 Cl_2(g) \rightarrow TiCl_4(g)$	∆ <i>H</i> ° = -763.2 kJ

a) -1567.4 kJ b) -41.0 kJ c) +1.054 kJ d) +41.0 kJ e) +1567.4 kJ

5. Which portion on the heating curve below represents melting ice and warming the liquid that forms?

6. When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from 25.18 °C to 47.53 °C. What is the enthalpy change per gram of KOH dissolved in the water? Assume that the solution has a specific heat capacity of 4.18 J/g·°C. Assume the cup absorbs no heat.

a) -116 J/g b) -934 J/g c) -1.03 × 10³ J/g d) -2.19 × 10³ J/g e) -1.03 × 10⁴ J/g

7. Which of the following chemical equations corresponds to the standard molar enthalpy of formation of SO₃?

a)
$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

- b) 2 SO₂(g) + O₂(g) \rightarrow 2 SO₃(g)
- c) S(s) + 12 O₂(g) \rightarrow 8 SO₃(g)
- d) 2 S(s) + 3 O₂(g) \rightarrow 2 SO₃(g)
- e) S(s) + $3/2 O_2(g) \rightarrow SO_3(g)$

8. Calculate ΔH° for the reaction below,

$$Fe_2O_3(s) + 3 H_2(g) \longrightarrow 2 Fe(s) + 3 H_2O(g)$$

using standard molar enthalpies of formation.

<u>molecule</u> Fe ₂ O ₃ (s)		<u>ΔH_f° (kJ/mol)</u> -824.2							
H ₂ O(g)		-241.8							
a) -582.4 kJ	b) 582.4 kJ	c) -1066 kJ	d) 1066 kJ	e) 98.8 kJ	f) -98.8 kJ				

9. Calculate the enthalpy change (ΔH) for the reaction below,

$$Br_2(g) + 3 F_2(g) \rightarrow 2 BrF_3(g)$$

given the bond enthalpies of the reactants and products.

		Bond E	Enthalpy							
	Bond	<u>(kJ/mol·rxn)</u>								
	Br-Br	193								
	F-F	155								
	Br-F	249								
a) -836 kJ	b) -89	kJ	c) +89 kJ	d) +99 kJ	e) +836 kJ					

10. Consider the enthalpy diagram here. What can be said of a system this diagram represents?

a) thermal energy is released and the system is exothermic
b) thermal energy is released and the system is endothermic
c) thermal energy is absorbed and the system is exothermic
d) thermal energy is absorbed and the system is endothermic
e) products are lower in energy than reactants

11. The specific heat capacity of Al is 0.897 J/g °C. That of Cu is 0.385 J/g °C.

What will the final temperature be if a 10-g block of Al at 0 $^{\circ}$ C is allowed to thermally equilibrate with a 10-g block of Cu at 100 $^{\circ}$ C?

a) 100 °C	b) greater than 50 °C but less than 100 °C
c) 0 °C	d) greater than 0 °C but less than 50 °C

12. You have two samples of gas, O_2 at 250 K and CO_2 at 250 K. Which is true?

a) O₂ has higher kinetic energy and greater average molecular speed

b) CO₂ has higher kinetic energy and lower average molecular speed

c) they have equal kinetic energy and O_2 has greater average molecular speed

d) they have equal kinetic energy and CO₂ has greater average molecular speed

e) they have equal kinetic energy and equal average molecular speed

13. You fill a balloon with 2.50 moles of gas at 22°C at a pressure of 1.62 atm. What is the volume of the balloon?

- a) 15.7 L
- b) 98.0 L
- c) 37.4 L
- d) 2.79 L
- e) 22.4 L

14. Which gas has the greatest density at room temperature and pressure?

a) He b) Cl_2 c) CH_4 d) CH_3CH_3 e) all gases the same

15. The mass of 1.12 liters of a gas at 1.00 atm and 0 °C is found to be 6.23 g. What is the molar mass of the gas?

- a) 56.0 g/mol
- b) 89.0 g/mol
- c) 125 g/mol
- d) 140. g/mol
- e) 157 g/mol
- 16. A gas sample is heated from -20.0°C to 57.0°C and the volume is increased from 2.00 L to 4.50 L. If the initial pressure is 0.140 atm, what is the final pressure?
 - a) 0.0477 atm
 - b) -0.177 atm
 - c) 0.411 atm
 - d) 0.242 atm
 - e) 0.0811 atm

17. What is the root-mean-square velocity of oxygen (O_2) gas at a temperature of 492 K?

- a) 19.6 m/s
- b) 619 m/s
- c) 456 m/s
- d) 153 m/s
- e) 722 m/s

18. The plot here shows the Boltzmann distribution curve for O_2 gas at 25 °C. Which would be true for CO_2 gas at 25 °C and for O_2 at 75 °C?

- a) both the curve for CO_2 gas at 25 $^{\rm o}\text{C}$ and for O_2 at 75 $^{\rm o}\text{C}$ would be to the left
- b) both the curve for CO_2 gas at 25 $^{\rm o}\text{C}$ and for O_2 at 75 $^{\rm o}\text{C}$ would be to the right
- c) the curve for CO_2 gas at 25 °C would be to the left and for O_2 at 75 °C would be to the right
- d) the curve for CO₂ gas at 25 °C would be to the right and for O₂ at 75 °C would be to the left

19. Gases at relatively low temperatures can exhibit nonideal behavior. Which describes this behavior and its cause?

- a) pressure is higher due to molecules taking up volume
- b) pressure is lower due to molecules taking up volume
- c) pressure is higher due to intermolecular interactions
- d) pressure is lower due to intermolecular interactions

BE SURE TO DO LONG ANSWER QUESTION on BACK of ANSWER SHEET

Scrap Paper

1 2	Hydrogen 1 H 1.0079 1A (1) Lithium 3 Li 6.941	2A (2) Beryllium 4 Be 9.0122			Т тя М	AIN GROUP RANSITION M ETALLOIDS DNMETALS			anium 92 U 3.0289-	- Atomic n - Symbol - Atomic w			3A (13) Boron 5 B 10.811	4A (14) Carbon 6 C 12.011	5A (15) Nitrogen 7 N 14.0067	6A (16) 0xygen 8 0 15.9994	7A (17) Fluorine 9 F 18,9984	8A (18) Hetium 2 He 4.0026 Neon 10 Ne 20.1797
3	Sodium 11 Na 22.9898	Magnesium 12 Mg 24.3050	3B (3)	4B (4)	58 (5)	6B (6)	7B (7)	(8)		(10)	1B (11)	28 (12)	Aluminum 13 Al 26.9815	Silicon 14 Si 28.0855	Phosphorus 15 P 30.9738	Sulfur 16 S 32.066	Chlorine 17 Cl 35.4527	Argon 18 Ar 39.948
4	Potassium 19 K 39.0983	Calcium 20 Ca 40.078	Scandium 21 SC 44.9559	Titanium 22 Ti 47.867	Vanadium 23 V 50.9415	Chromium 24 Cr 51,9961	Manganese 25 Mn 54.9380	Iron 26 Fe 55.845	Cobalt 27 CO 58.9332	Nickel 28 Ni 58.6934	Copper 29 Cu 63.546	Zinc 30 Zn 65.38	Gallium 31 Ga 69.723	Germanium 32 Ge 72.61	Arsenic 33 As 74.9216	Selenium 34 Se 78.96	Bromine 35 Br 79.904	Krypton 36 Kr 83.80
5	Rubidium 37 Rb 85.4678	Strontium 38 Sr 87.62	Yttrium 39 Y 88.9059	Zirconium 40 Zr 91.224	Niobium 41 Nb 92.9064	Molybdenum 42 Mo 95.96	Technetium 43 TC (97.907)	Ruthenium 44 Ru 101.07	Rhodium 45 Rh 102.9055	Palladium 46 Pd 106.42	Silver 47 Ag 107.8682	Cadmium 48 Cd 112.411	Indium 49 In 114.818	Tin 50 Sn 118.710	Antimony 51 Sb 121.760	Tellurium 52 Te 127.60	Iodine 53 I 126.9045	Xenon 54 Xe 131.29
6	Cesium 55 CS 132.9055	Barium 56 Ba 137.327	Lanthanum 57 La 138.9055	Hafnium 72 Hf 178.49	Tantalum 73 Ta 180.9479	Tungsten 74 W 183.84	Rhenium 75 Re 186.207	0smium 76 0s 190.23	Iridium 77 Ir 192.22	Platinum 78 Pt 195.084	Gold 79 Au 196.9666	Mercury 80 Hg 200.59	Thallium 81 TL 204.3833	Lead 82 Pb 207.2	Bismuth 83 Bi 208.9804	Polonium 84 Po (208.98)	Astatine 85 At (209.99)	Radon 86 Rn (222.02)
7	Francium 87 Fr (223.02)	Radium 88 Ra (226.0254)	Actinium 89 Ac (227.0278)	Rutherfordium 104 Rf (267)	Dubnium 105 Db (268)	Seaborgium 106 Sg (271)	Bohrium 107 Bh (272)	Hassium 108 Hs (270)	Meitnerium 109 Mt (276)	Darmstadtium 110 DS (281)	Roentgenium 111 Rg (280)	Copernicium 112 Cn (285)	Ununtrium 113 Uut Discovered 2004	Ununquadium 114 Uuq Discovered 1999	Ununpentium 115 Uup Discovered 2004	Ununhexium 116 Uuh Discovered 1999	Ununseptium 117 UUS Discovered 2010	Ununoctium 118 UUO Discovered 2002
20 (uj Nu ato	mbers in pa mic masses		;). re mbers	Actinides	Cerium 58 Ce 140.116 Thorium 90 Th	Praseodymium 59 Pr 140.9076 Protactinium 91 Pa	Neodymium 60 Nd 144.242 Uranium 92 U	Promethium 61 Pm (144.91) Neptunium 93 Np	62 Sm 150.36	Europium 63 EU 151.964 Americium 95 Am	Gadolinium 64 Gd 157.25 Curium 96 Cm	Terbium 65 Tb 158.9254 Berkelium 97 Bk	Dysprosium 66 Dy 162.50 Californium 98 Cf	Holmium 67 Ho 164.9303 Einsteinium 99 Es	Erbium 68 Er 167.26 Fermium 100 Fm	Thulium 69 Tm 168.9342 Mendelevium 101 Md	Ytterbium 70 Yb 173.054 Nobelium 102 No	Lutetium 71 LU 174.9668 Lawrencium 103 Lr

$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2} \qquad PV = nRT$$

1 atm = 760 mm Hg

 $R = 0.0821 L \cdot atm / K \cdot mol$

R = 8.314 J/K·mol
$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

 ΔH = Σ energy needed to break bonds – Σ energy released forming bonds

$$\Delta H_{rxn}^{o} = \sum \Delta H_{f}^{o}(products) - \sum \Delta H_{f}^{o}(reactants)$$