Chemistry 112-2014, Vining

NAME: Answer Key

Exam #3

Take Home Version

1. When the reversible reaction, $N_2 + O_2 \rightleftharpoons 2$ NO, has reached a state of dynamic equilibrium, which statement below is true?

(a) Both the forward and reverse reactions stop completely and no more NO, N₂ or O₂ are produced.

(b) The rate of the forward reaction equals the rate of the reverse reaction.

(c) The rate constant of the forward reaction equals the rate constant of the reverse reaction.

2. For the reaction 2 SO₂Cl₂(g) \rightleftharpoons 2 SO₂(g) + Cl₂(g) , the expression for K_{eq} is

(a)

$$K_{eq} = \frac{[SO_2]^2 [Cl_2]^2}{[SO_2 Cl_2]^2}$$
(b)

$$K_{eq} = \frac{[SO_2]^2 [Cl_2]}{[SO_2 Cl_2]^2}$$
(c)

$$K_{eq} = \frac{[SO_2]^2 [Cl_2]}{[SO_2 Cl_2]^2}$$
(c)

$$K_{eq} = \frac{2[SO_2]^2 [Cl_2]}{2[SO_2 Cl_2]^2}$$
(c)

$$K_{eq} = \frac{2[SO_2]^2 [Cl_2]}{2[SO_2 Cl_2]^2}$$
(c)

3. The equilibrium $2 \operatorname{SO}_2\operatorname{Cl}_2(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{Cl}_2(g)$ has an equilibrium constant of K = 22.6. What is the value of K for the equilibrium written as: $\operatorname{SO}_2(g) + \frac{1}{2} \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{SO}_2\operatorname{Cl}_2(g)$?

(a) 22.6 (b) 0.0442 (c) 511 (d) 0.00196 (e) 0.210

Reaction is reversed and multiplied by 1/2. Reversing the reaction leads to the inverse. Multiplying by a constant, raise K to the power of that constant. So, $K_2 = 1/K_1^{0.5} = 0.210$.

4. Consider the system, $2 \text{ CH}_2(g) \rightleftharpoons CH_4(g) + CCl_4(g)$, which has an equilibrium constant of K = 2.4. If a system has:

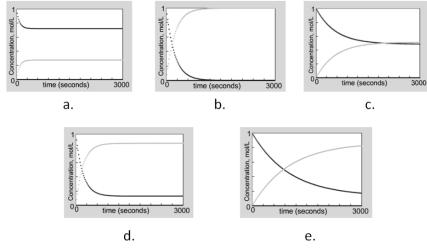
then, (a) the system is at equilibrium

(b) the system is not at equilibrium and will react to form more CH_2CI_2

(c) the system is not at equilibrium and will react to form more CH₄ and CCl₄

 $\mathbf{Q} = \frac{[\mathbf{CH}_4][\mathbf{CCl}_4]}{[\mathbf{CH}_2\mathbf{Cl}_2]^2} = \frac{1.64 \times 0.58}{0.22^2} = 19.7 > K$ Because Q>K, not at equilibrium, shifts left

5. The following system is at equilibrium $CH_4(g) + CCI_4(g) \rightleftharpoons 2 CH_2CI_2(g)$.


If CCl₄ is added to the sample, what will then happen to the concentrations of CH₄ and of CH₂Cl₂?

- (a) both [CH₄] and [CH₂Cl₂] will increase
- (b) both $[CH_4]$ and $[CH_2Cl_2]$ will decrease

(c) [CH₄] will decrease and [CH₂Cl₂] will increase--- reaction shift right, using CH₄, making CH₂Cl₂

- (d) $[CH_4]$ will increase and $[CH_2Cl_2]$ will decrease
- (e) [CH₄] will remain constant and [CH₂Cl₂] will increase

Questions 6-7 use the following concentration-time plots. The black line represents reactants and the light gray line represents products. Answer with the correct letter.

6. Which reaction goes to completion? (b)--- reactant concentration drops to zero

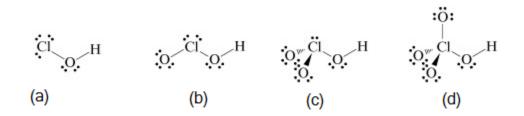
7. Which reaction has the smallest equilibrium constant? (a) --- smallest [products]

8. What is the conjugate base of HC_2O_4 ? *Remove an H*⁺

(a) $H_2C_2O_4$ (b) $H_3C_2O_4^+$ (c) 2 CO₂ (d) $C_2O_4^{2-}$

9. What is the pH of a 0.000483 M solution of NaOH?
 This is a strong base, so [OH-] = 0.000483
 pOH = -log(0.000483) = 3.31; pH = 14.00 - 3.31 = 10.68

(a) 4.83×10^{-4} (b) 2.07×10^{-11} (c) 3.31 (d) 10.68 (e) 7.00


10. What are $[H_3O^+]$ and $[OH^-]$ for a solution that has a pH of 9.0?

(a) $[H_3O^+] = 9 M$ and $[OH^-] = 5 M$ (b) $[H_3O^+] = 5 M$ and $[OH^-] = 9 M$ (c) $[H_3O^+] = 1 \times 10^9 M$ and $[OH^-] = 1 \times 10^5 M$ (d) $[H_3O^+] = 1 \times 10^{-5} M$ and $[OH^-] = 1 \times 10^{-9} M$ (e) $[H_3O^+] = 1 \times 10^{-9} M$ and $[OH^-] = 1 \times 10^{-5} M$

11. Which of the following are the pH ranges expected for solutions of NH₄NO₃ and KCN?

a) NH₄NO₃ is acidi	С	and	KCN is basic
b) NH ₄ NO ₃ is acidic	and	KCN is	neutral
c) NH_4NO_3 is basic	and	KCN is	basic
d) NH_4NO_3 is neutral	and	KCN is	acidic

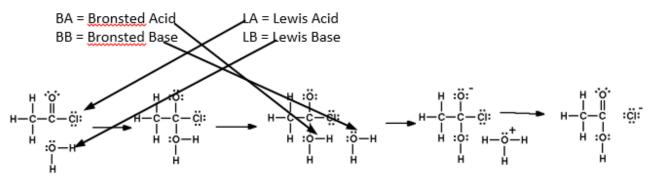
12. Which of the following acids has the largest K_a value? (d) has the most electronegative O atoms

13. Consult the table of K_a values provided. Is it possible for a solution of hydrofluoric acid to have a higher pH than a solution of formic acid? That's all the information you are given- don't ask for more.

(a) yes (b) no (c) it is impossible to answer

Although HF is a stronger acid, pH depends on both Ka and the acid concentration.

14. A chemical system has an equilibrium constant of 1.4×10^{-6} . This means:


(a) ΔG° is positive and the system is reactant-favored

Exam #3B: ANSWER SHEET								Name	:		
1.	а	b	С	d	е	8.	а	b	С	d	e
2.	а	b	С	d	е	9.	а	b	С	d	e
3.	а	b	С	d	е	10.	а	b	С	d	e
4.	а	b	С	d	е	11.	а	b	С	d	е
5.	а	b	С	d	е	12.	а	b	С	d	e
6.	а	b	С	d	е	13.	а	b	С	d	е
7.	а	b	С	d	e	14.	а	b	С	d	е

15. Write the net-ionic equation for the acid-base reaction occurring between HClO and KOH.

HClO is a weak acid: $HClO(aq) + HO^{-}(aq) \rightarrow H_2O(l) + ClO^{-}(aq)$

16. Consider the following set of reaction steps. Add the following labels to the species they represent. Point to the species and add the label. You label four things in total. If something is both Lewis and Bronsted, label it Bronsted. For example, find something that is acting as a Lewis Acid and draw and arrow to it labeled with "LA."

17. For each of the following, circle the one that will have the higher pH (or circle they are the same):

a. 0.1 M CH_3CO_2H	or	0.1 M NaCH ₃ CO ₂	or	same
b. 0.1 M HCl	or	0.1 NaOH	or	same
c. 0.1 M HCl	or	0.1 M HNO ₃	or	same

18. A student ran the following reaction in the laboratory at **450** K: $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ When she introduced **0.789** moles of $PCI_5(g)$ into a 1.00 liter container, she found the equilibrium concentration of $CI_2(g)$ to be **0.0312** M. Calculate the equilibrium constant, K_c .

	PCI₅ (g)	₹	PCl₃ (g)	+	Cl ₂ (g)
I	0.789		0		0
С	-X		+x		+x
Е	0.789-x		х		0.0312

X = 0.0312 [PCl5]eq = 0.789 – 0.0312 = 0.7578 M [PCl3]eq = [Cl2] = x = 0.0312 M

 $K = \frac{[\text{PCl}_3][\text{Cl}_2]}{[\text{PCl}_5]} = \frac{x \cdot x}{0.789 - x} = \frac{(0.0312)^2}{0.7578} = 0.00128$

19. Butene isomerizes to form cyclobutane.

butene \rightleftharpoons cyclobutane K = 6.0

If a sample of 1.00 M butene is placed in a flask and allowed to react, what will [cyclobutane] be once equilibrium is established?

I	butene 1.00	₽	cyclobutane 0
С	-x		+x
Ε	1.00 – x		х
6 – 6x 6 = 7x	ĸ	∕I = [cyclobutane]

20 in-class version. What is the pH of a 0.30 M solution of CH₃CO₂H?

 CH_3CO_2H is a weak acid.

	($CH_3CO_2H + H_2O$	↔ H ₃ O ⁺ +	- CH ₃ CO ₂ ⁻	
	I	0.30	0	0	
	С	-X	+χ	+x	
	Е	0.30 – x	Х	х	
		F 2	2		5 4/2
K _a = 1.8	3 x 10	$D^{-5} = x^2 / (0.30 - x) \approx$	≈ x²/0.30	x = (1.8 >	$(10^{-5} \cdot 0.30)^{1/2} = 0.00232M = [H_3O^+]$

The above estimation is allowed because 0.30 is more than 100x greater than K_{a} .

 $pH = -log[H_3O^+] = 2.63$

20 take-home version. What is the pH of a 0.0030 M solution of HF?

HF is a weak acid.

	HF + H₂O	\neq H ₃ O ⁺	+	F
I I	0.30	0		0
С	-X	+x		+χ
Е	0.30 – x	х		х

$$K_a = 7.4 \times 10^{-4} = x^2/(0.0030-x)$$

The estimation that $0.0030 - x \approx x^2/0.0030$ is not allowed. X must be found using the quadratic.

 $x = = 0.001165 = [H_3O^+]$

 $pH = -log[H_3O^+] = 2.93$

21. A 0.100 M solution of a weak acid, HA, has pH = 3.88 at 25 °C and pH = 3.10 at 55 °C. What are Δ H° and Δ S° for the weak acid ionization reaction?

Pathway:

1. for each temperature, $pH \rightarrow [H_3O^+] \rightarrow K \rightarrow \Delta G^\circ$

2. compare ΔG^{o} at different temperatures to find ΔS^{o}

3. use ΔG^o and ΔS^o at one temperature to find ΔH^o

25 °C = 298 K $[H_3O^+] = 10^{-3.88} = 1.32e^{-4} M$ $K_a = (1.32e^{-4})^2/(0.1000 - 1.32e^{-4}) = 1.745e^{-7}$ $\Delta G^{\circ}(298) = -RT \ln K = -8.314 J/K \mod x 298 K x \ln(1.745e^{-7}) = +38,554 J$

55 °C = 328 K $[H_3O^+] = 10^{-3.10} = 7.94e^{-4} M$ $K_a = (7.94e^{-4})^2/(0.1000 - 7.94e^{-4}) = 6.360e^{-6}$ $\Delta G^{\circ}(298) = -RT \ln K = -8.314 J/K mol x 328 K x ln(6.360e^{-6}) = +32,630 J$

 $38554 \text{ J} = \Delta \text{H}^{\circ} - 298 \text{ K} \Delta \text{S}^{\circ}$ $-[33630 \text{ J} = \Delta \text{H}^{\circ} - 328 \text{ K} \Delta \text{S}^{\circ}]$ $5924 \text{ J} = +30 \text{ K} \Delta \text{S}^{\circ}$

 ΔS° = 5924/30 J/K = 197 J/K ΔH° = 38554 J + 298 K ΔS° = 38554 J + 298 K (197 J/K) = +97,400 J = 97.4 kJ

Alternate to steps 2 and 3:

 $\ln \frac{K_2}{K_1} = \frac{\Delta H^o}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$ insert K and T values and solve for $\Delta H^o = 97400 \text{ J}$

use ΔG° and ΔH° at one temperature to find ΔS° .

Useful Information

$pH = -log[H_3O^+]$	pOH = -log[OH ⁻]	$K_w = 1.0 \times 10^{-14}$	at 25 °C
s	n n		0

 $[H_3O^+] = 10^{-pH} \qquad [OH^-] = 10^{-pOH} \qquad \Delta G^o = -RT \ln K \qquad \Delta G = \Delta G^o + RT \ln Q$

		K _a an	d K _b Values		
Name of Acid	Acid	Ka	Name of Base	Base	Kb
Hydrogen sulfate ion	HSO4-	1.2 × 10 ⁻²	sulfate ion	504 ²⁻	8.3 × 10 ⁻¹³
Phosphoric acid	H ₃ PO ₄	7.5 × 10 ⁻³	dihydrogen phosphate ion	H ₂ PO ₄ -	1.3 × 10 ⁻¹²
Hexaaquairon(III)ion	Fe(H ₂ O) ₆ 3+	6.3 x 10 ⁻³	pentaaquahydroxoiron(III) ion	Fe(H2O)5OH2+	1.6 × 10 ⁻¹²
Hydrofluoric acid	HF	7.4 × 10 ⁻⁴	fluoride ion	F	1.4 × 10 ⁻¹¹
Formic acid	HCO2H	1.8 × 10 ⁻⁴	formate ion	HCO2-	5.6 x 10 ⁻¹¹
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3 x 10 ⁻⁵	benzoate ion	C6H5CO2-	1.6 × 10 ⁻¹⁰
Acetic acid	CH3CO2H	1.8 × 10 ⁻⁵	acetate ion	CH3CO2	5.6 x 10 ⁻¹⁰
Hexaaquaaluminum ion	A1(H ₂ O) ₆ 3+	7.9 × 10 ⁻⁶	pentaaquahydroxoaluminum ion	A1(H ₂ O) ₅ OH ²⁺	1.3×10^{-9}
Carbonic acid	H ₂ CO ₃	4.2 × 10 ⁻⁷	hydrogen carbonate ion	HCO3	2.4 × 10 ⁻⁸
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS ⁻	1 × 10 ⁻⁷
Dihydrogen phosphate ion	H ₂ PO ₄ -	6.2 x 10 ⁻⁸	hydrogen phosphate ion	HPO4 ²⁻	1.6 × 10 ⁻⁷
Hypochlorous acid	HC1O	3.5 × 10 ⁻⁸	hypochlorite ion	C10-	2.9 × 10 ⁻⁷
Ammonium ion	NH4+	5.6 x 10 ⁻¹⁰	ammonia	NH ₃	1.8 × 10 ⁻⁵
Hydrocyanic acid	HCN	4.0 × 10 ⁻¹⁰	cyanide ion	CN ⁺	2.5 × 10 ⁻⁵
Hexaaquairon(II) ion	Fe(H ₂ O) ₆ 2+	3.2 × 10 ⁻¹⁰	pentaaquahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH+	3.1 × 10 ^{−5}
Hydrogen carbonate ion	HCO3-	4.8 × 10 ⁻¹¹	carbonate ion	CO32-	2.1 × 10 ⁻⁴
Hydrogen phosphate ion	HPO42-	3.6 x 10 ⁻¹³	phosphate ion	PO43-	2.8 x 10 ⁻²

	1 A																	18 VIIA
	1 1.0079																	2 4.0026
1	Η																	He
R	HYDROGEN	2 IIA											13 DIA	14 IVA	15 VA	16 VIA	17 VIA	HELIUM
- 0	3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be											В	С	Ν	0	F	Ne
	LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
	11 22.990	12 24.305											13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Mg							– VIIIB –				Al	Si	Р	S	Cl	Ar
	SODIUM	MAGNESIUM	3 B	4 VB	5 VB	6 VIB	7 V I B	8	9	10	11 B	12 B	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
4	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON