Chemistry 112-2014, Exam #4, VERSION 2

**1.** Which of the following will create a buffer solution when equal volumes of each solution are mixed? Choose all that apply—there may be more than one correct answer.

(a)  $0.20 \text{ M} \text{HNO}_3$  +  $0.10 \text{ M} \text{H}_2\text{CO}_3$ (b)  $0.20 \text{ M} \text{HCO}_2\text{H}$  +  $0.10 \text{ M} \text{NaHCO}_2$ (c) 0.20 M HF +  $0.20 \text{ M} \text{CaF}_2$ (d)  $0.10 \text{ M} \text{HNO}_3$  +  $0.30 \text{ M} \text{NaCH}_3\text{CO}_2$ (e)  $0.20 \text{ M} \text{NaNO}_2$  +  $0.10 \text{ M} \text{NH}_3$ 

**2.** Which of the following acid-base pairs would be used to create a buffer of pH = 9.8, and which species would be present in higher concentration?

| Weak Acid                                   | Conjugate Base                                              | K <sub>a</sub>                          | pКa           |           |  |  |  |  |
|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------|---------------|-----------|--|--|--|--|
| HC <sub>2</sub> O <sub>4</sub> -            | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup>                 | 6.4 x 10 <sup>-5</sup>                  | 4.19          |           |  |  |  |  |
| H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | HPO42-                                                      | 6.2 x 10 <sup>-8</sup>                  | 7.21          |           |  |  |  |  |
| HCO3-                                       | CO32-                                                       | 4.8 x 10 <sup>-11</sup>                 | 10.32         |           |  |  |  |  |
| a) HC <sub>2</sub> (                        | $O_4^{-}/C_2O_4^{-2-}$                                      | $HC_2O_4^-$ in                          | greater conce | entration |  |  |  |  |
| b) HC <sub>2</sub>                          | $O_4^{-}/C_2O_4^{-2-}$                                      | $C_2 O_4^{2-}$ in greater concentration |               |           |  |  |  |  |
| c) H <sub>2</sub> P(                        | D <sub>4</sub> <sup>-</sup> /HPO <sub>4</sub> <sup>2-</sup> | $H_2PO_4$ in                            | greater conce | entration |  |  |  |  |

d)  $H_2PO_4^{-}/HPO_4^{-2-}$   $HPO_4^{-2-}$  in greater concentration

e)  $HCO_3^{-7}/CO_3^{-2-}$ f)  $HCO_3^{-7}/CO_3^{-2-}$ HCO\_3^{-2-} in greater concentration  $CO_3^{-2-}$  in greater concentration

**3.** Calculate the pH after 0.0200 mol of NaC<sub>6</sub>H<sub>5</sub>CO<sub>2</sub> are added to 175 mL of a 0.180 M solution of C<sub>6</sub>H<sub>5</sub>CO<sub>2</sub>H.

a) 3.82 b) 4.00 c) 4.20 d) 4.40 e) 5.86

4. Under which circumstances will PbCl<sub>2</sub> be most soluble?

a) in pure water
b) in a solution of 0.10 M Pb(NO<sub>3</sub>)<sub>2</sub>
c) in a solution of 0.10 M NaCl
d) none of these- PbCl<sub>2</sub> is insoluble

5. What is the solubility of AgBr, in grams per liter? Molar mass = 187.8 g/mol.

a)  $1.38 \times 10^{-4}$  g/L b)  $1.01 \times 10^{-10}$  g/L c)  $5.07 \times 10^{-11}$  g/L d)  $7.35 \times 10^{-7}$  g/L e)  $1.38 \times 10^{-4}$  g/L

6. What is the molar solubility of CaF<sub>2</sub> in a 0.50 M solution of KF?

a) 5.3 x 10<sup>-11</sup> M b) 1.06 x 10<sup>-10</sup> M c) 2.12 x 10<sup>-10</sup> M d) 2.37 x 10<sup>-4</sup> M e) 0.25 M

7. Which of the following can water (H<sub>2</sub>O) not act as?
a) Bronsted acid b) Bronsted base c) Lewis acid d) Lewis base

**8.** Consider the following pair of reaction steps. Add the following labels to the species they represent. Point to the species and add the label. You label four things in total. If something is both Lewis and Bronsted, label it Bronsted. For example, find something that is acting as a Lewis Acid and draw and arrow to it labeled with "LA."







a. which species is mainly prevalent at pH = 8?

b. What is  $\mathsf{pK}_{\mathsf{a}}$  of HA?

c. What is K<sub>a</sub> of HA?

d. If this acid-base pair were a pH indicator, would it be suitable for the titration of  $\rm NH_4^+$  with NaOH?

Yes or No

**10.** A saturated solution of chromium(III) hydroxide,  $Cr(OH)_3$ , is found to have a pH of 10.63. What is  $K_{sp}$  for  $Cr(OH)_3$  dissolution?

**11.** The reaction below takes place in an electrochemical cell using compartments containing  $Zn/ZnSO_4(aq)$  and  $Cu/CuSO_4(aq)$ .

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

a) write the oxidation half-reaction:

b) write the reduction half-reaction:

c) label the following: anode, cathode, salt bridge, direction of electrons, direction of sulfate ions



## 12.

Consider the titration curve below involving a weak acid (HA) and a weak base (A<sup>-</sup>).



a. Which does this titration represent? Circle it.

weak acid being titrated with NaOH or

weak base being titrated with HCl

b. What is the approximate value of  $K_{\text{a}}$  for the acid

form (HA) of the studied acid-base pair?

K<sub>a</sub> = \_\_\_\_\_

c. What acid-base species is/are mainly in solution at point A?

d. What acid-base species is/are mainly in solution at point B?\_\_\_\_\_

e. What acid-base species is/are mainly in solution at point C? \_\_\_\_\_\_

**13.** a) What is the pH of a buffer composed of 1.0 L of 0.30 M  $HCO_2H$  and 0.50 M  $HCO^{2-}$ ?

b) What is the pH of this buffer after 0.080 mol NaOH have been added?

**14.** The Henderson-Hasselbalch equation has a built-in assumption that is not completely valid. Determine the percent error use of the Henderson-Hasselbalch equation leads to when predicting the pH of a buffer containing 0.010 M HF + 0.010 M NaF.

**15.** What is the concentration of free Ni<sup>2+</sup> in a 0.200 M solution of Ni(NH<sub>3</sub>)<sub>6</sub><sup>2+</sup>?  $K_f = 5.5 \times 10^8$ 

What is the concentration of  $Ni^{2+}$  if  $NH_3$  is added to the solution so  $[NH_3] = 0.100$  M?

|                          |                                                 | K <sub>a</sub> an       | nd K <sub>b</sub> Values      |                                                    |                         |  |  |  |  |
|--------------------------|-------------------------------------------------|-------------------------|-------------------------------|----------------------------------------------------|-------------------------|--|--|--|--|
| Name of Acid             | Acid                                            | Ka                      | Name of Base                  | Base                                               | Kb                      |  |  |  |  |
| Hydrogen sulfate ion     | HSO4-                                           | 1.2 × 10 <sup>-2</sup>  | sulfate ion                   | 504 <sup>2-</sup>                                  | 8.3 × 10 <sup>-13</sup> |  |  |  |  |
| Phosphoric acid          | H <sub>3</sub> PO <sub>4</sub>                  | 7.5 × 10 <sup>-3</sup>  | dihydrogen phosphate ion      | H <sub>2</sub> PO <sub>4</sub> -                   | 1.3 x 10 <sup>-12</sup> |  |  |  |  |
| Hexaaquairon(III)ion     | Fe(H <sub>2</sub> O) <sub>6</sub> 3+            | 6.3 x 10 <sup>-3</sup>  | pentaaquahydroxoiron(III) ion | Fe(H <sub>2</sub> O) <sub>5</sub> OH <sup>2+</sup> | 1.6 x 10 <sup>-12</sup> |  |  |  |  |
| Hydrofluoric acid        | HF                                              | 7.4 x 10 <sup>-4</sup>  | fluoride ion                  | F                                                  | 1.4 × 10 <sup>-11</sup> |  |  |  |  |
| Formic acid              | HCO <sub>2</sub> H                              | 1.8 × 10 <sup>-4</sup>  | formate ion                   | HCO2-                                              | 5.6 x 10 <sup>-11</sup> |  |  |  |  |
| Benzoic acid             | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H | 6.3 × 10 <sup>-5</sup>  | benzoate ion                  | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> -    | 1.6 x 10 <sup>-10</sup> |  |  |  |  |
| Acetic acid              | CH3CO2H                                         | 1.8 × 10 <sup>-5</sup>  | acetate ion                   | CH3CO2                                             | 5.6 x 10 <sup>-10</sup> |  |  |  |  |
| Hexaaquaaluminum ion     | A1(H <sub>2</sub> O) <sub>6</sub> 3+            | 7.9 × 10 <sup>-6</sup>  | pentaaquahydroxoaluminum ion  | A1(H <sub>2</sub> O) <sub>5</sub> OH <sup>2+</sup> | 1.3 x 10 <sup>-9</sup>  |  |  |  |  |
| Carbonic acid            | H <sub>2</sub> CO <sub>3</sub>                  | 4.2 x 10 <sup>−7</sup>  | hydrogen carbonate ion        | HCO3                                               | 2.4 x 10 <sup>-8</sup>  |  |  |  |  |
| Hydrogen sulfide         | H <sub>2</sub> S                                | 1 × 10 <sup>-7</sup>    | hydrogen sulfide ion          | HS <sup>-</sup>                                    | 1 × 10 <sup>-7</sup>    |  |  |  |  |
| Dihydrogen phosphate ion | H <sub>2</sub> PO <sub>4</sub> -                | 6.2 × 10 <sup>-8</sup>  | hydrogen phosphate ion        | HPO4 <sup>2-</sup>                                 | 1.6 × 10 <sup>-7</sup>  |  |  |  |  |
| Hypochlorous acid        | HC1O                                            | 3.5 × 10 <sup>-8</sup>  | hypochlorite ion              | C10 <sup>-1</sup>                                  | 2.9 x 10 <sup>-7</sup>  |  |  |  |  |
| Ammonium ion             | NH4+                                            | 5.6 x 10 <sup>-10</sup> | ammonia                       | NH <sub>3</sub>                                    | 1.8 × 10 <sup>-5</sup>  |  |  |  |  |
| Hydrocyanic acid         | HCN                                             | 4.0 x 10 <sup>-10</sup> | cyanide ion                   | CN <sup>2</sup>                                    | 2.5 x 10 <sup>-5</sup>  |  |  |  |  |
| Hexaaquairon(II) ion     | Fe(H <sub>2</sub> O) <sub>6</sub> 2+            | $3.2 \times 10^{-10}$   | pentaaquahydroxoiron(II) ion  | Fe(H <sub>2</sub> O) <sub>5</sub> OH+              | $3.1 \times 10^{-5}$    |  |  |  |  |
| Hydrogen carbonate ion   | HCO3-                                           | 4.8 x 10 <sup>-11</sup> | carbonate ion                 | CO32-                                              | 2.1 x 10 <sup>-4</sup>  |  |  |  |  |
| Hydrogen phosphate ion   | HPO42-                                          | 3.6 × 10 <sup>-13</sup> | phosphate ion                 | PO4 <sup>3-</sup>                                  | $2.8 \times 10^{-2}$    |  |  |  |  |

|  | <b>(</b> _ | and K <sub>h</sub> | values for | Common | Weak | Acids an | d Base |
|--|------------|--------------------|------------|--------|------|----------|--------|
|--|------------|--------------------|------------|--------|------|----------|--------|

| K <sub>so</sub> Value  | es for Some              |     |                        |                            |                 |
|------------------------|--------------------------|-----|------------------------|----------------------------|-----------------|
| Insolu                 | ıble Salts               |     |                        |                            |                 |
| Compound               | K <sub>sp</sub> at 25 °C |     |                        |                            |                 |
| CaCO3                  | 3.4 × 10 <sup>-9</sup>   |     | GROUP                  |                            | Ρ               |
| SrCO <sub>3</sub>      | 5.6 × 10 <sup>-10</sup>  |     | 1 1.0079               |                            | -               |
| BaCO <sub>3</sub>      | 2.6 × 10 <sup>-9</sup>   | PEF | HYDROGEN               | 2 IA                       | 1               |
| BaSO <sub>4</sub>      | 1.1 × 10 <sup>-10</sup>  | 2   | Li                     | Be                         |                 |
| CaF <sub>2</sub>       | 5.3 × 10 <sup>-11</sup>  |     | LITHIUM<br>11 22.990   | BERYLLIUM<br>12 24.305     | -               |
| -<br>FeCO <sub>2</sub> | 3.1 × 10 <sup>-11</sup>  | 3   | Na<br>sodium           |                            | 3               |
| Fe(OH)                 | 4.9 × 10 <sup>-17</sup>  | 4   | 19 39.098<br>K         | <sup>20</sup> 40.078<br>Ca | 21 44.9<br>Sc   |
| AgC1                   | 1.8 × 10 <sup>-10</sup>  |     | POTASSIUM<br>37 85.468 | CALCIUM<br>38 87.62        | SCAND<br>39 88. |
| AgBr                   | 5.4 × 10 <sup>-13</sup>  | 5   | RUBIDIUM               | Sr<br>strontium            | YTTRI           |
| Agl                    | 8.5 × 10 <sup>-17</sup>  | 6   | 55 132.91<br>CS        | 56 137.33<br>Ba            | 57-7<br>La-L    |
| AgoCrO4                | $1.1 \times 10^{-12}$    |     | CAESIUM<br>87 (223)    | BARIUM<br>88 (226)         | Lantha          |
| PhC1 <sub>2</sub>      | 1.7 × 10 <sup>-5</sup>   | 7   | Fr                     | Ra                         | Ac-I<br>Actini  |
| PbCrO <sub>4</sub>     | 2.8 × 10 <sup>-13</sup>  |     | FRANCIUM               | RADIUM                     |                 |
| PbBr <sub>5</sub>      | 6.6 × 10 <sup>-6</sup>   |     |                        |                            |                 |
| PbSO <sub>4</sub>      | 2.5 × 10 <sup>-8</sup>   |     |                        |                            |                 |

|   | GROUP     |           | PF               | RI            | OD         | IC         | ΤΔ         | BI         | FC           | )F <sup>-</sup> | тн               | FF        | ΙF        | MF           | -N1           | ſS               |           | 10 1/1114 |
|---|-----------|-----------|------------------|---------------|------------|------------|------------|------------|--------------|-----------------|------------------|-----------|-----------|--------------|---------------|------------------|-----------|-----------|
|   | 1 1.0079  |           |                  |               |            |            |            |            |              |                 |                  |           | http:     | //www.ktf-sj | olit.hr/perio | odni/e n/        |           | 2 4.0026  |
| 1 | Н         |           |                  |               | CROUPN     | TIMDERS    |            | CROFT      | NUMBERS      |                 |                  |           |           |              |               |                  |           | Не        |
|   | HYDROGEN  | 2 IIA     |                  | п             | UPAC RECON | MENDATION  | i c        | HEMICAL AL | BSTRACT SEF  | RVICE           |                  |           | 13 IIIA   | 14 IVA       | 15 VA         | 16 VIA           | 17 VIIA   | HELIUM    |
|   | 3 6.941   | 4 9.0122  |                  |               | (1)        |            | 13 IIA     |            | (1980)       |                 |                  |           | 5 10.811  | 6 12.011     | 7 14.007      | 8 15.999         | 9 18.998  | 10 20.180 |
| 2 | Li        | Be        |                  |               | ATOMIC     | NUMBER —   | 5 10.811   | - RELATIV  | EATOMIC M/   | ASS (1)         |                  |           | В         | C            | N             | 0                | F         | Ne        |
|   | LITHIUM   | BERYLLIUM |                  |               |            | SYMBOL -   | -B         |            |              |                 |                  |           | BORON     | CARBON       | NITROGEN      | OXYGEN           | FLUORINE  | NEON      |
|   | 11 22.990 | 12 24.305 |                  |               |            |            | BORON      | ELEMEN     | <b>FNAME</b> |                 |                  |           | 13 26.982 | 14 28.086    | 15 30.974     | 16 32.065        | 17 35.453 | 18 39.948 |
| 3 | Na        | Mg        |                  |               |            |            |            |            | 1.000        |                 |                  |           | Al        | Si           | Р             | S                | CI        | Ar        |
|   | SODIUM    | MAGNESIUM | 3    B           | 4 IVB         | 5 VB       | 6 VIB      | 7 VIIB     | 8          | 9 VIIIB -    | 10              | 11 B             | 12 IB     | ALUMINUM  | SILICON      | PHOSPHORUS    | SULPHUR          | CHLORINE  | ARGON     |
|   | 19 39.098 | 20 40.078 | 21 44.956        | 22 47.867     | 23 50.942  | 24 51.996  | 25 54.938  | 26 55.845  | 27 58.933    | 28 58.693       | <b>29</b> 63.546 | 30 65.39  | 31 69.723 | 32 72.64     | 33 74.922     | 34 78.96         | 35 79.904 | 36 83.80  |
| 4 | K         | Ca        | Sc               | Ti            | V          | Cr         | Mn         | Fe         | Со           | Ni              | Cu               | Zn        | Ga        | Ge           | As            | Se               | Br        | Kr        |
|   | POTASSIUM | CALCIUM   | SCANDIUM         | TITANIUM      | VANADIUM   | CHROMIUM   | MANGANESE  | IRON       | COBALT       | NICKEL          | COPPER           | ZINC      | GALLIUM   | GERMANIUM    | ARSENIC       | SELENIUM         | BROMINE   | KRYP TON  |
|   | 37 85.468 | 38 87.62  | <b>39</b> 88.906 | 40 91.224     | 41 92.906  | 42 95.94   | 43 (98)    | 44 101.07  | 45 102.91    | 46 106.42       | 47 107.87        | 48 112.41 | 49 114.82 | 50 118.71    | 51 121.76     | <b>52</b> 127.60 | 53 126.90 | 54 131.29 |
| 5 | Rb        | Sr        | Y                | Zr            | Nb         | Mo         | Tc         | Ru         | Rh           | Pd              | Ag               | Cd        | In        | Sn           | Sb            | Te               | I         | Xe        |
|   | RUBIDIUM  | STRONTIUM | YTTRUM           | ZIRCONIUM     | NIOBIUM    | MOLYBDENUM | TECHNETIUM | RUTHENIUM  | RHODIUM      | PALLADIUM       | SILVER           | CADMIUM   | INDIUM    | TIN          | ANTIMONY      | TELLURIUM        | IODINE    | XENON     |
|   | 55 132.91 | 56 137.33 | 57-71            | 72 178.49     | 73 180.95  | 74 183.84  | 75 186.21  | 76 190.23  | 77 192.22    | 78 195.08       | 79 196.97        | 80 200.59 | 81 204.38 | 82 207.2     | 83 208.98     | 84 (209)         | 85 (210)  | 86 (222)  |
| 6 | Cs        | Ba        | La-Lu            | Hf            | Та         | W          | Re         | Os         | Ir           | Pt              | Au               | Hg        | TI        | Pb           | Bi            | Po               | At        | Rn        |
|   | CAESIUM   | BARIUM    | Lanthanide       | HAFNUM        | TANTALUM   | TUNGSTEN   | RHENIUM    | OSMIUM     | RIDIUM       | PLATINUM        | GOLD             | MERCURY   | THALLIUM  | LEAD         | BISMUTH       | POLONIUM         | ASTATINE  | RADON     |
|   | 87 (223)  | 88 (226)  | 89-103           | 104 (261)     | 105 (262)  | 106 (266)  | 107 (264)  | 108 (277)  | 109 (268)    | 110 (281)       | 111 (272)        | 112 (285) |           | 114 (289)    |               |                  |           |           |
| 7 | Fr        | Ra        | Ac-Lr            | Rf            | Db         | Sg         | Bh         | Hs         | Mt           | Uum             | Uuu              | Uub       |           | Uuq          |               |                  |           |           |
|   | FRANCIUM  | RADIUM    | Actinide         | RUTHERFORDIUM | DUBNUM     | SEABORGUM  | BOHRIUM    | HASSIUM    | MEITNERIUM   | UNUNNILIUM      | UNUNUNUM         | UNUNBIUM  |           | UNUNQUADUM   |               |                  |           |           |

$$pH = pK_a + log \frac{[base]}{[acid]}$$