DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES

Name	
Partner's Name	
l	
Grade and Instructor Comments	
Part 1: Experimental Measurement—Determin	ning a Numerical Value for K _w
Experimental pH of 0.010 M NaOH =	

Part 1: Calculations—Determining a Numerical Value for K_w

What is your measured pH? _____

Based on the measured pH, what is the hydronium ion concentration? $[H_3O^+] = _____M K$ Knowing that in a 0.010 M NaOH solution, $[OH^-] = 0.010$ M, calculate a value for K_w from your experimental value of the measured hydronium ion concentration and the known OH⁻ concentration of the 0.010 M NaOH.

 $K_w = [H_3O^+][OH^-] =$

and $pK_w = -\log K_w =$

Compare your results with the data taken from the scientific literature:

T (°C)	K _w	рК _w
20	$0.68 \ge 10^{-14}$	14.17
25	$1.01 \ge 10^{-14}$	14.00

 K_w , as is the case for all equilibrium constants, varies with temperature. However, at a given temperature, K_w is a constant for an aqueous solution. This means that at 25 °C in any aqueous solution, regardless of solute, the value of K_w {=[H₃O⁺][OH⁻]} is 1.01 x 10⁻¹⁴.

What is the pH of pure water at 25 °C?

Part 2. Determination of K_a for the Ammonium Ion—Experimental Measurements Data Table for Solutions of Ammonium Ion and Ammonia

Enter the experimental pH values you determine in the lab in the last column. Complete the open areas of the table.

* Be very careful to rinse your glass electrode thoroughly with water before an after making this measurement.

Solution	[NH ₄ Cl], M	[NH ₃], M	Solute Type (Acid, Base, or Acid + Conj. Base	Enter Your Experimental pH
А	0.10	0	Acid	
В	1.0	0		
С	0.050	0.050		
D	0.50	0.50		
E	0	0.10		

Part 2: Calo	culating K _a for	r the Ammon	ium Ion		
a) Write the	balanced, net io	onic equation f	or the reaction of	of ammonium ion with wate	er.
b) Write the	equilibrium con	istant expressio	on for K _a for aqu	eous $\mathrm{NH_4^+}$	
below. Use in the tabl	e your measured	l pH values for calculate K _a fo	each solution (NH4 ⁺] (from the previous p A-E) to calculate [H30 ⁺] an m ion and enter the values i	nd enter these values
Average c	alculated K _a valu	ie =		and average pK _a =	
Solution	[H ₃ 0+], M	[NH ₃], M	[NH ₄ +], M	Calculated K _a for NH ₄ +	Calculated pK_a for NH_4^+
A					
-В					
С					
D					
E				Not a required calcu- lation	Not a required calcu- lation

Part 3. Properties of NH₄⁺/NH₃ Buffer Solutions—Experimental Measurements

- Your experimental readings from page 70 are entered in the column labeled "Initial pH."
- NOTE: make a pH measurement on pure water before adding acid or base.
- Data for the pH after the addition of excess acid or base is entered into the columns marked "pH on adding H+" and "pH adding OH" as appropriate.

Solution	[NH ₄ ⁺], M	[NH ₃], M	ΔpH on adding H^+	pH on adding H+	Initial pH	pH on adding OH ⁻	∆pH adding OH ⁻
А	0.10	0					
-В	1.0	0					
С	0.050	0.050					
D	0.50	0.50					
E*	0	0.10					
-Pure water							

Part 3: Properties of NH₄⁺/NH₃ Buffer Solutions—Questions and Calculations

Effect of Dilution on the pH of a Buffer:

If the solution is diluted more than 10-fold, which solution — 1.0 M NH₄Cl (solution B) or 0.50 M NH₄Cl + 0.50 M NH₃ (solution D) —does the pH change more? (*Base your answer on the data in the "Initial pH" column on page 76.*)

Explain, on the basis of the K_a expression, why dilution has less effect on the pH of a buffer solution than on the pH of a solution containing only the acid as a solute (here NH_4^+).

Effect of Added H₃O⁺ and OH⁻ on a Buffer

Compare the values of ΔpH (the changes in pH) for solutions C and D (in the table on page 15) with those for solutions of the acid along (A and B) or conjugate base alone (E).

a) Which solutions show a buffering action?

b) Write balanced chemical equations for reactions that prevent larger changes in pH.

Part 4. Titration Curves

The change in indicator color in an acid-base titration is a signal that the equivalence point is very near. Here you test two indicators that change colors in two different pH ranges.

Indicator	Color in Acidic Solution	Color in Basic Solution
Bromcresol green		
Phenolphthalein		

See Chemistry & Chemical Reactivity, page 872, Figure 18.10 for indicator colors.

Titration Results: Option (a)—HCl + NaOH

The volumes of NaOH in the table are suggested values. Enter your actual volumes of NaOH used in the table (second and fifth columns). Enter experimental data in every cell in the table.

Suggested V _{NaOH} , mL	Actual V _{NaOH} , mL	Measured pH	Indicator Color	Suggested V _{NaOH} , mL	Actual V _{NaOH} , mL	Measured pH	Indicator Color
0				22			
3				23			
6				24			
8				24.5			
10				25			
12				25.5			
14				26			
16				28			
18				30			
20				32			

Deductions from the HCl Titration Curve

a) Write a balanced, net ionic equation for the reaction that occurs during the titration.

Be sure to attach to your report form a carefully drawn plot of pH versus volume of base added. Be sure your name appears on the plot.

- b) How many equivalence points can you detect? Explain the connection between the number of equivalence points and the reaction occurring.
- c) CLEARLY LABEL on your titration curve the formulas for the species present at:
 - i) before adding NaOH
 - (ii) after 15 mL of NaOH has been added
 - ii) at the equivalence point
- d) What is the connection between the indicator colors and the equivalence point?

Titration Results: Option (b)—H₃PO₄ + NaOH

The volumes of NaOH in the table are suggested values. Enter your actual volumes of NaOH used in the table (second and fifth columns). Enter experimental data in every cell in the table.

Suggested V _{NaOH} , mL	Actual V _{NaOH} , mL	Measured pH	Indicator Color	Suggested V _{NaOH} , mL	Actual V _{NaOH} , mL	Measured pH	Indicator Color
0				19			
3				19.5			
6				20			
8				20.5			
9				21			
9.5				22			
10				23			
10.5				24			
11				26			
12				28			
13				30			
15				35			
17				40			

Deductions from the Phosphoric Acid Titration Curve

a) Write balanced, net ionic equations for the three possible successive reactions that of pH versus volume of base added. Be su

Be sure to attach to your report form a carefully drawn plot of pH versus volume of base added. Be sure your name appears on the plot.

1.

2.

3.

b) How many equivalence points can you detect?

- c) CLEARLY LABEL on your titration curve the formulas for the species present at:
 - i) the equivalence points
 - ii) between the equivalence points
- d) For which reaction or reactions (in a above) did you NOT see an equivalence point?
- e) Write the equilibrium constant expressions for K_1 and K_2 of H_3PO_4

- f) Determine the pK values for H_3PO_4 from your curve.
 - $pK_1 (H_3PO_4) = _$ and so $K_1 (H_3PO_4) = _$
 - $pK_2 (H_3PO_4) = ___$ and so $K_2 (H_3PO_4) = ___$
- g) Calculate the ratio of experimental K_1 and K_2 values:

 $K_1/K_2 =$ ____

h) What are the values of pH at the first and second equivalence point on your pH titration curve for phosphoric acid?

pH at 1st equivalence point_____

pH at 2nd equivalence point_____

Explain why bromcresol green and phenolphthalein are suitable indicators for determining the concentration of a phosphoric acid solution. (See Figure 18.10 on page 872 of *Chemistry & Chemical Reactivity*.)