Some Equations and Constants for your use:

$$\lambda \times \nu = c$$
 $E = h \nu$ $E_{c} = \frac{-2.18 \times 10^{-15} \text{ J}}{n^{2}}$ $\lambda = \frac{h}{\text{mv}}$
 $c = 3.00 \times 10^{5} \text{ m/s}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

1. Light and Energy

Consider electromagnetic radiation that delivers 2.00 x 10⁻¹⁹ J for each photon. Include units.

a. What is the frequency of the radiation, in Hz?

$$V = \frac{E}{h} = \frac{2.00 \times 10^{19} \text{J}}{6.626 \times 10^{34} \text{J.s}} = \frac{3.02 \times 10^{45} \text{J}}{3.02 \times 10^{45} \text{J}}$$

b. What is the wavelength of this light, in nm?

$$\lambda = \frac{\zeta}{V} = \frac{3.00710^8 \, \text{m/s}}{3.02 \times 10^{14} \, \text{s}^{-1}} = 9.94 \times 10^{-7} \, \text{m}$$

2. Electromagnetic Spectrum

Consider the electromagnetic spectrum below. The labels for the x-axis numbers have been omitted.

1020	1015	1018	10	10	1015	1014	1011	1013	10	1010	
Gamma fays	>	X rays		Far love of ultra core of some		Near infrared	Far d infrared				TV FM AM Radio waves
10 12 10	1 10) 10 10) 5 1		0 10	10	5 10		0 1 10	10	· · · · · · · · · · · · · · · · · · ·

- a. Which x-axis represents wavelength: bottom top or
- b. increasing wavelength = increasing decreasing or frequency
- c. increasing frequency = decreasing increasing photon energy or
- d. Which type of radiation has greater energy per photon?

Radio

e. Which type of radiation has greater frequency?

10

3. Fill in the following chart regarding orbitals. The answer to at least one of these is zero.

number of orbitals

number of electrons that can be held

n = 3 shell

4p subshell

$$3$$
 1
 2 f subshell

 5 g subshell

 9

4. Orbital Shapes

10

Give the orbital designation for each orbital pictured. For example, 2s or 4px.

how many planar nodes?

Dot Picture

35

how many spherical nodes? ______

how many spherical nodes? 2

Consider the wavefunction below. r, x, and y = represent distances of the electron from the nucleus. In what regions would it equal zero (that is, have a node)? (Answer something like "when z = 0" and there can be more than one answer.)

$$\psi = (3-r)xy e^{-r}$$

$$\psi = (3-$$

Match each of the responses below with the correct arrow from the figure.

- a) The emission line with the shortest wavelength.
- b) The absorption line with the longest wavelength.
- c) The emission line with the **highest** energy
- **6.** Which of the following sets of quantum numbers are allowed (circle each that is allowed):

(a.)
$$n = 3$$
, $l = 2$, $m_l = -1$
 $n = 3$, $l = 3$, $m_l = 0$

$$n = 9, l = 0, m_l = 0$$

7. Complete the electron configuration for nitrogen using the diagram below. I have labeled the 1s subshell. You need to add arrows for electrons and label all the other subshells.

Is a nitrogen atom paramagnetic or diamagnetic?

- 8. Give electron configurations for the following (using spdf (1s² 2s² etc. notation, or noble gas notation):
- 1522522p6351 a. Na
- 1522512p63523p6 b. S²⁻
- c. Mg^{2+} $[s^2 2g^2 2p^6]$ d. Cr^{3+} $[Av]3J^3$

9. Trends!

Which is larger:

- Radius of:
- or

or

or

or

- Radius of:

- Radius of:
- Na⁺

Ο

- Radius of:

- Ionization energy of: S
- or
- Ionization energy of: Na

or

- Ionization energy of: (N)
- Ο

An atom has the following attributes:

- a. it is smaller than As
- b. it is smaller than Te
- c. it has lower energy orbitals than Se
- d. it is larger than Cl
- e. it forms a 1- ion

What element is it?

Energy of 2p orbital in C

or

Energy of 2p orbital in O

Energy of 2p orbital in C

or

Energy of 3p orbital in Si

Given the standard enthalpy changes for the following two reactions:

$$(1) 2C(s) + 2H2(g) \longrightarrow C2H4(g)$$

$$\rightarrow C_2H_4(g)$$
 $\Delta H^\circ = 52.3 \text{ kJ}$ -52.3

(2)
$$2C(s) + 3H_2(g) \longrightarrow C_2H_6(g)$$
 $\Delta H^\circ = -84.7 \text{ kJ}$

$$\Delta H^{\circ} = -84.7 \text{ k.}$$

what is the standard enthalpy change for the reaction: $= -137 \, \text{kJ}$ (3) $C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$ $\Delta H^\circ = ?$ $-137 \, \text{kJ}$

$$(3) C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$$

11.

A student determines the heat of dissolution of solid magnesium chloride using a coffee-cup calorimeter of negligible heat capacity.

When 0.630 g (= 0.00662 mol) of $MgCl_2(s)$ is dissolved in 119.00 g of water, the temperature of the solution increases from 25.00 to 27.19°C. Calculate the enthalpy of dissolution of MgCl₂(s) in AH= #J = 4.184 Jame × 119.63 g × 2.19°C = 1096J kJ/mol. Assume the specific heat of the solution is 4.184 J/g°C.

$$\Delta H = \frac{1096J}{0.00662ma} = \frac{-166,000J/ma}{0.00662ma}$$

$$= -\frac{166 kJ/ma}{ma}$$
(regative because temperature increases.)

$$\Delta H_{dissolution} = -166$$
 kJ/mol

12.

Using standard heats of formation, calculate the standard enthalpy change for the following reaction.

$$2H_2S(g) + 3O_2(g) \xrightarrow{\hspace*{1cm}} 2H_2O(l) + 2SO_2(g)$$

$$\Delta H_f^{\circ}$$
 , kJ/mol

$$H_2S(g)$$

-20.6

-285.8

$$SO_2(g)$$

-296.8

$$\Delta H = \left[2(-285.8) + 2(-296.8) \right] - \left[2(-20.6) \right] = -1124 \, \text{kJ/nol}$$

ANSWER:

kΙ