Questions 1-15 = 4 points each, no partial credit; Questions 16-20 = 8 points each, with partial credit **ANSWER BOTH SCANTRON and PAPER** Hand in both.

- **1.** When the reversible reaction, $N_2 + O_2 \rightleftharpoons 2$ NO, has reached a state of dynamic equilibrium, which statement below is true?
 - (a) Both the forward and reverse reactions stop completely and no more NO, N_2 or O_2 are produced.
 - (b) The rate of the forward reaction equals the rate of the reverse reaction.
 - (c) The rate constant of the forward reaction equals the rate constant of the reverse reaction.
- 2. Which of the following best favors a reaction having a fast rate?
 - (a) low activation energy
 - (b) high activation energy
 - (c) low activation energy and high temperature
 - (d) high activation energy and high temperature
 - (e) high activation energy and low temperature
 - (f) low activation energy, high temperature, and negative ΔH
- **3.** For a reaction with the rate law: Rate = k[A]:
 - (a) a plot of In[A] vs. time gives a straight line.
 - (b) a plot of 1/[A] vs. 1/time gives a straight line.
 - (c) a plot of [A] vs. time gives a straight line.
 - (d) a plot of 1/[A] vs. time gives a straight line.
 - (e) a plot of log $\frac{[A]_0}{[A]}$ vs. 1/time gives a straight line.
- **4.** The gas phase reaction $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ follows the rate law: Rate = $k[C_2H_4][Cl_2]^2$. If the concentration of C_2H_4 is doubled while the concentration of Cl_2 remains constant, the initial rate of the reaction:
 - (a) increases by a factor of 4.
 - (b) decreases by a factor of 2.
 - (c) increases by a factor of 2. because the reaction is first order in C2H4
 - (d) increases by a factor of 1.5.
 - (e) remains constant.

5. Use the following information for the reaction: $2A + B \rightarrow C$. Initial rates were measured at different molar concentrations.

Experiment	[A]	[B]	Initial Rate (mol/L·s)
1	1.0 x 10 ⁻²	1.0 x 10 ⁻²	5.3 x 10 ⁻⁴
2	2.0 x 10 ⁻²	1.0 x 10 ⁻²	1.06 x 10 ⁻³
3	3.0 x 10 ⁻²	2.0 x 10 ⁻²	1.59 x 10 ⁻³
4	2.0 x 10 ⁻²	2.0 x 10 ⁻²	1.06 x 10 ⁻³

(d) Three

What is the order of this reaction with respect to reactant [B]?

(b) One (c) Two (a) Zero The rate does not change when [B] changes.

6. What is a *half-life*?

- (a) It is a special case when the rate constant equals one-half. (i.e. k = 0.5)
- (b) A period of time required for the concentration of a reactant to reduce to one-half its original value.
- (c) It is a rate law that is one-half order: (ie. Rate = $k[A]^{1/2}$)
- (d) One half the time it takes for the reaction to go to completion.
- (e) A period representing the amount of time required for an initial concentration of a reactant to reduce to 0.5 M.
- 7. Consider the system, $2 \text{ CH}_2\text{Cl}_2(g) \Leftrightarrow \text{CH}_4(g) + \text{CCl}_4(g)$, which has an equilibrium constant of K = 2.4. If a system has:

$$[CH_2CI_2] = 0.22 M$$

 $[CH_4] = 1.64 M$
 $[CCI_4] = 0.58 M$

- (a) the system is at equilibrium then,
 - (b) the system is not at equilibrium and will react to form more CH₂Cl₂
 - (c) the system is not at equilibrium and will react to form more CH₄ and CCl₄

 $Q = (1.64)(0.58)/(0.22)^2 = 19.7$; Q > K, so product concentrations are too high; reaction shifts left.

8. Iodine-123 is used to study thyroid gland function. This radioactive isotope breaks down in a first order process with a half-life of 13.1 hours. What is the rate constant, k for the process?

(a) 0.0529 hr^{-1} (b) 6.55 hr^{-1} (c) 9.08 hr⁻¹ (d) 18.9 hr⁻¹ (e) 26.2 hr⁻¹

for a first order reaction, $k = 0.693/t_{1/2}$

9. For the reaction $2 SO_2Cl_2(g) \rightleftharpoons 2 SO_2(g) + 2 Cl_2(g)$, the expression for K_{eq} is

$$K_{eq} = \frac{[SO_2]^2[Cl_2]^2}{[SO_2Cl_2]^2}$$

10. The following system is at equilibrium $CH_4(g) + CCI_4(g) \rightleftharpoons CH_2CI_2(g)$.

If CCl₄ is removed from the sample, what will then happen to the concentrations of CH₄ and of CH₂Cl₂?

- (a) both [CH₄] and [CH₂Cl₂] will increase
- (b) both [CH₄] and [CH₂Cl₂] will decrease
- (c) [CH₄] will decrease and [CH₂Cl₂] will increase
- (d) $[CH_4]$ will increase and $[CH_2Cl_2]$ will decrease
- (e) [CH₄] will remain constant and [CH₂Cl₂] will increase

Reaction shifts left to replenish the decreased CCI4.

- **11.** What are $[H_3O^{\dagger}]$ and $[OH^{\dagger}]$ for a solution that has a pH of 9.0?
 - (a) $[H_3O^+] = 9 M$ and $[OH^-] = 5 M$
 - (b) $[H_3O^+] = 5 \text{ M} \text{ and } [OH^-] = 9 \text{ M}$
 - (c) $[H_3O^+] = 1 \times 10^{-9} \text{ M}$ and $[OH^-] = 1 \times 10^{-5} \text{ M}$
 - (d) $[H_3O^+] = 1 \times 10^{-5} M$ and $[OH^-] = 1 \times 10^{-9} M$
 - (e) $[H_3O^+] = 1 \times 10^9 \text{ M} \text{ and } [OH^-] = 1 \times 10^5 \text{ M}$
- **12.** What is the conjugate base of HC_2O_4 ?

 - (a) $H_2C_2O_4$ **(b)** $C_2O_4^{2-}$
- (c) 2 CO₂
- (d) $H_3C_2O_4^+$

Questions 13-15 use the following concentration-time plots. The black line represents reactants and the light gray line represents products. Answer with the correct letter.

C.

a.

b.

d.

e.

13. Which reaction goes to completion?

В

14. Which reaction has the smallest equilibrium constant?

Α

15. Which reaction has an equilibrium constant of about 1 (K = 1)?

С

For questions 16-20, your work MUST be shown. You must use the ICE method where noted. Partial credit for these problems will be given where appropriate.

16. The rate constant for a first order reaction at 773 K is 1.68 s⁻¹. The rate constant for this process at 873 K is 14.6 s⁻¹.

What is the activation energy for the reaction in kJ/mol? (R = 8.314 $J/mol \cdot K$)

$$\ln \frac{14.6}{1.68} = -\frac{Ea}{R} \left[\frac{1}{873K} - \frac{1}{773K} \right]$$

$$2.162 = -\frac{Ea}{R} \left[-0.0001482 \right]$$

$$Ea = \frac{2.162 \cdot 8.314 J / K}{0.0001482} = 121000 J = 121 kJ$$

17. A highly toxic pesticide decomposes in the soil via a *first order rate law*. The rate constant for the decomposition is 0.0995 days⁻¹. How long will it take for it to decompose to 10% of its original concentration? In days.

The key here is that $[R]_t/[R]_o = 0.10$

$$ln(0.10) = -kt$$

$$-2.303 = -0.0995 \, day^{-1} t$$

$$t = 2.303/0.0995$$
 days = 23.1 days

18. Butene isomerizes to form isobutane.

butene
$$\rightleftharpoons$$
 cyclobutane K = 6.0

If a sample of 1.00 M butene is placed in a flask and allowed to react, what will [cyclobutane] be once equilibrium is established?

Show your work, the ICE method must be used and presented correctly.

$$K = 6.0 = \frac{x}{1.0 - x}$$

$$6.0(1.0-x) = x$$

$$6.0 - 6.0x = x$$

$$6.0 = 7x$$

$$x = 6/7 = 0.857 = [cyclobutane]$$

19. What is the pH of a 0.30 M solution of CH_3CO_2H ? $K_a = 1.8 \times 10^{-5}$

Show your work, the ICE method must be used and presented correctly.

This is a standard weak acid equilibrium case.

$$CH_3CO_2H + H_2O \rightleftharpoons H_3O^+ + CH_3CO_2^-$$

initial 0.30 0 0
change -x +x +x
Equilibrium 0.30 - x x x

$$K = 1.8 \times 10^{-5} = \frac{[H_3 O^+][C H_3 C O_2^-]}{[C H_3 C O_2 H]} = \frac{x^2}{0.30 - x} \approx \frac{x^2}{0.30}$$

$$x = \sqrt{0.30 \cdot 1.8 \times 10^{-5}} = 0.00232M = [H_3O^+]$$

 $pH = -log(0.00232) = 2.63$

20. Consider the reaction, $C_3H_6CIOH(aq) \rightarrow C_3H_5OH(aq) + HCI(aq)$ which is first order in C_3H_6CIOH with a rate constant of 0.125 min⁻¹. If the reaction is started with $[C_3H_6CIOH] = 0.88$ M, what will the pH be after 15 minutes?

This problem requires you to determine how much C_3H_6CIOH reacts in 15 minutes. That then will tell you how much HCl is produced. That, in turn tells the pH.

$$[C_3H_6CIOH]_{15min} = 0.88 \text{ M } e^{-(0.125)(15)} = 0.135 \text{ M}$$

The change in $[C_3H_6CIOH] = 0.88 M - 0.135 M = 0.745 M$

Each C_3H_6CIOH that reacts produces one HCl, so, $[HCl]_{15 \, min} = 0.745$.

$$[H_3O^+] = 0.745; pH = 0.128$$

pH = _____

helium 2 4.0026	neon 10	Ne	20.180	argon 18	Ar	39.948	krypton 36	マ	83.80	xenon 54	Xe	131.29	radon 86	Rh	[222]			
	fluorine 9	ш	18,998	chlorine 17	ပ	35.453	bromine 35	B	79.904	iodine 53	_	126.90	astatine 85	At	[210]			
Ď.	oxygen 8	0	15.999	sulfur 16	S	32.065	selenium 34	Se	78.96	tellurium 52	Te	127.60	polonium 84	Ро	[209]			
	nitrogen 7	Z	14.007	phosphorus 15	Ь	30.974	arsenic 33	As	74.922	antimony 51	Sb	121.76	bismuth 83	Bi	208.98			
	carbon 6	ပ	12.011	silicon 14	S	28.086	germanium 32	Ge	72.61	tin 50	Sn	118.71	ead 82	Pb	207.2	ununquadium		[289]
5	boron 5	В	10.811	aluminium 13	A	26.982	gallium 31	Ga	69.723	indium 49	l	114.82	thallium 81	F	204.38			
Ę							zinc 30	Zn	65.39	cadmium 48	S C	112.41	mercury 80	H	200.59	ununbium 442	Unb	[277]
							copper 29	no	63.546	silver 47	Ag	107.87	plog 79	Au	196.97	unununium 444		[272]
Į.							nickel 28	Z	58.693	palladium 46	Pd	106.42	platinum 78	Pt	195.08	ununnilium	UIIN	[271]
C.							cobalt 27	ပ္ပ	58,933	rhodium 45	Rh	102.91	iridium 77	_	192.22	meitherium 100	¥	[268]
E.							iron 26	Fe	55.845	ruthenium 44	Ru	101.07	osmium 76	Os	190.23	hassium 108	J.	[269]
							manganese 25	Mn	54.938	technetium 43	ا ا	[86]	rhenium 75	Re	186.21	bohrium 107	R	[264]
Ell.								Ç		-					- 1			
i.							vanadium 23	>	50.942	niobium 41	Q N	92.906	tantalum 73	La	180.95	dubnium 105	P	[262]
6							titanium 22	F	47.867	zirconium 40	Zr	91.224	hafnium 72	H	178.49	rutherfordium	Ŗ	[261]
ř.							scandium 21	Sc	44.956	yttrium 39	>	88.906	lutetium 71	Γn	174.97	lawrencium	<u> </u>	[262]
													57-70	*		90.402	* *	
	beryllium 4	Be	9.0122	magnesium 12	Md	24.305	calcium 20	Ca	40.078	strontium 38	S	87.62	barium 56	Ba	137.33	madium	8 K	[226]
hydrogen 1.0079	Ilthium 3	Ξ	6.941	sodium 11	Na	22.990	potassium 19	¥	39.098	rubidium 37	Rb	85.468	caesium 55	Cs	132.91	francium 9.7	i L	[223]
			-	5														

	lanthanum 57	cerium	praseodymium 50	neodymium	promethium 61		europium 63	gadolinium	terblum 65	dysprosium	holmium 67	erbium	thullum	0.000
*Lanthanide series	5	3	3	3	5		3	5	3	3	5	3	6	
	_ La	ပ	P	Ž	Pm		Д Ш	O O	Q H	2	운	Щ	Tm	
	138.91	140.12		144.24	[145]		151.96	157.25	158.93	162.50	164.93	167.26	168.93	
	actinium	thorium	protactinium	uranium	neptunium		americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	
* * Actinide series	68	90	91		93		98	96	26	86	66	100	101	
	Ac	드	Ра	⊃	Q N	Pu	Am	CH	路	Ç	Es	Fm	р М	٥
	[227]	232.04	231.04		[237]		[243]	[247]	[247]	[251]	[252]	[257]	[258]	