Name: Answer, Version A

Exam # 4a Vining

1. For each pair, choose the species with the greater entropy:

2 NO₂(g) $N_2O_4(g)$ or H₂O(g) $H_2O(1)$

2 MgO(s) → 2 Mg(s) + O₂(g) reaction is endothermic 2. In which temperature range will the following reaction be thermodynamically most favored:

- a. at all temperatures

b. at no temperatures / c. at high temperatures

d. at low temperatures

3. Consider the reaction: $2 H_2(g) + O_2(g) \rightarrow H_2O(1)$ \longleftrightarrow directions by ΔS

The reaction occurs at room temperature. What can be said about thermodynamic control of the reaction?

a. it is disfavored and enthalpy controlled

Favored ornall

- b. it is disfavored and entropy controlled
- c. it is favored and enthalpy controlled)
- d. it is favored and entropy controlled
- **4.** For a reaction to actually occur, it must be favored by:
 - a. thermodynamics

c. either thermodynamics or kinetics

b. kinetics

- d. both thermodynamics and kinetics
- 5. You have a saturated solution of AgCl that has solid AgCl at the bottom of the solution. Some NaCl solution is added to the AgCl solution. What happens?
 - a) nothing
 - b) more AgCl precipitates
 - c) NaCl precipitates
 - d) solid AgCl dissolves

Favored or Fall

6. NaOH is highly soluble and when solid NaOH dissolves, the solution gets warm. What can you tell from this information:

In terms of enthalpy, dissolution is: (favored disfavored can't tell can't tell In terms of entropy, dissolution is: favored disfavored In terms of ΔG° , dissolution is: favored) disfavored can't tell In terms of kinetics, dissolution is: disfavored / favored can't tell

7. A chemical system has an equilibrium constant of 4.4×10^6 . What is ΔG° for the reaction?

$$DG^{\circ} = -RT \ln K$$

= -8.314J × 298K× $\ln (4.4 \times 10^{6}) = 37,900 J/mol$
 $\times \frac{1}{100}$

8. Will Cu₃(PO₄)₂ be more soluble in pure water, or in water in which Na₃PO₄ has been dissolved?

$$Cu_3(PO_4)_2(s) \rightleftharpoons 3 Cu^{2+}(aq) + 2 PO_4^{3-}(aq)$$

(a) pure water

(b) Na₃PO₄ solution

Is Fe(OH)₂ more soluble in: b) 0.1 M HCl a) pure water c) 0.1M NaOH

9. Write the equilibrium reaction and the K_{sp} equilibrium expression for dissolution of:

$$AI_{2}(CO_{3})_{3}(5) \rightleftharpoons 2AI_{3}^{3+}(a_{6}) + 3CO_{3}^{2-}(a_{6})$$

$$K_{5p} = [AI_{3}^{3+}]^{2}(CO_{3}^{2-}]^{3}$$

10. Label any species that are acting as Lewis acids (LA), Lewis bases (LB), Bronsted acids (BA), or Bronsted bases (BB).

$$0 - C = 0$$

$$0 -$$

$$\begin{array}{c}
LA \\
0 = C = 0 \\
H - 0 \\
H
\end{array}$$

$$\begin{array}{c}
0 = C = 0 \\
H - 0 \\
H
\end{array}$$

In which of the following ways can a water molecule act? Choose all that apply.

11. What is the solubility of $Cd_3(PO_4)_2$, in moles per liter? $K_{sp} = 2.2 \times 10^{-32}$

12. Use the following reaction and the data given to calculate ΔG° at 328 K.

$$2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(l)$$

$$\Delta H^{\circ} = -752.2 \text{ kJ and } \Delta S^{\circ} = -351.6 \text{ J/K}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -752.2 \text{ kJ and } \Delta S^{\circ} = -351.6 \text{ J/K}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -752.2 \text{ kJ/mol}$$

Is the reaction favored at 328 K:

In what temperature range is the reaction favored?

no temperatures below 2140 K

2140K

13. Methanol boils at 65 °C with an enthalpy of vaporization of 35.2 kJ/mol.

What is the entropy change for the vaporization of methanol at 65 °C?

$$\Delta S = -\frac{\Delta H Vap}{T} = -\frac{35,200 J huol}{(65+273) K} = \frac{1}{1}$$

14. What is the solubility of PbBr₂ is a 0.15 M solution of NaBr, in grams per liter?

Molar mass $PbBr_2 = 367 \text{ g/mol}$.

$$K_{sp} = 6.6 \times 10^{-6}$$

$$PbBr_{2}(s) \geq Pb^{2t} (a_{8}) + 2Bv^{-} \approx (x) (0.15)^{2}$$

$$= 0 \quad 0.15$$

$$+ x \quad +2x \quad x = 2.93 \times 10^{4} \text{ mol } / L$$

$$= 0.15 + 2x \quad 2.93 \times 10^{4} \text{ mol } / L$$

$$6,6\times10^{-6} = (x)(0,15+2x)^{2}$$

$$\approx (x)(0,15)^{2}$$

$$x = 2.93\times10^{-4} \text{ mol/L}$$

15. Cu²⁺ forms a complex ion with ammonia:

$$Cu^{2+}(aq) + 4 NH_3(aq) ===== [Cu(NH_3)_4]^{2+}(aq)$$

$$K_f = 2.1 \times 10^{13}$$

Formation of the complex ion is:

moderately favored

not favored

What is the value of K_d , the dissociation constant for the complex ion, $[Cu(NH_3)_4]^{2+}$?

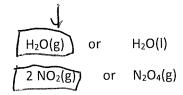
16. Determine ΔH^0 , ΔS^0 , ΔG^0 for the following reaction at 298 K.

$$SF_6(g) + 3 H_2(g) \rightarrow S(s) + 6 HF(g)$$

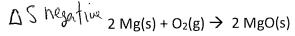
	$\Delta H_{\rm f}^{\rm o}({\rm kJ/mol})$	ΔG_f^o (kJ/mol)	S°(J/K·mol)
SF ₆ (g)	-1209	-1105	292
H ₂ (g)	0	0	131
S(s)	0	0	32
HF(g)	-271	-273	174

$$\Delta H^{\circ} = [0+6(-271)] - [-1209+3(0)] = -417 kJ/mol$$

$$\Delta S^{\circ} = [2727]$$


$$[32+6(174)] - [292+3(131)] = +391 J/k-mol$$

$$[32+6(174)] - [292+3(131)] = +417 kJ/mol$$


$$\Delta G^{\circ} = [0+6(-773)] - (-1105+3(0)) kJ/mol \Delta H^{\circ} = -417 kJ/mol \Delta H^{\circ} = -417 kJ/mol \Delta H^{\circ} = -417 kJ/mol \Delta H^{\circ} = -533 kJ/mol \Delta H^{\circ} = -533 kJ/mol \Delta H^{\circ} = -533 kJ/mol$$

Exam # 4b Vining

1. For each pair, choose the species with the greater entropy:

2. In which temperature range will the following reaction be thermodynamically most favored:

reaction is exothermic

- a. at all temperatures
- b. at no temperatures
- c. at high temperatures

d. at low temperatures

3. Consider the reaction: $2 H_2(g) + O_2(g) \rightarrow H_2O(I)$

DS negative < not favored by entropy

The reaction occurs at room temperature. What can be said about thermodynamic control of the reaction?

a. it is disfavored and enthalpy controlled

Favored overall

b. it is disfavored and entropy controlled

c. it is favored and enthalpy controlled

- d. it is favored and entropy controlled
- **4.** For a reaction to actually occur, it must be favored by:
 - a. thermodynamics

c. either thermodynamics or kinetics

b. kinetics

d. both thermodynamics and kinetics

- **5.** You have a saturated solution of AgCl that has solid AgCl at the bottom of the solution. Some NaCl solution is added to the AgCl solution. What happens?
 - a) nothing
 - b) more AgCl precipitates
 - c) NaCl precipitates
 - d) solid AgCl dissolves

C exothermic,

In terms of enthalpy, dissolution is: \(\) favored

disfavored

can't tell

: enthalpy

In terms of entropy, dissolution is:

favored

disfavored

can't tell

In terms of ΔG° , dissolution is:

(favored)

disfavored

can't tell

In terms of kinetics, dissolution is: T favored

disfavored

can't tell

7. A chemical system has an equilibrium constant of 2.4 x 10^4 . What is ΔG° for the reaction?

$$\Delta G^{\circ} = -RT \ln K = -8.314 J_{k.mol} \times 298 K \times \ln (2.4 \times 10^4)$$

= -25,000 J/mol

$$\Delta G^{\circ} = \frac{-25.0}{\text{kJ/mol}}$$

8. Will Cu₃(PO₄)₂ be more soluble in pure water, or in water in which Na₃PO₄ has been dissolved?

$$Cu_3(PO_4)_2(s) \rightleftharpoons 3 Cu^{2+}(aq) + 2 PO_4^{3-}(aq)$$

a) pure water

b) Na₃PO₄ solution

Is Fe(OH)₂ more soluble in:

a) pure water

b) 0.1 M HCl

c) 0.1M NaOH

9. Write the equilibrium reaction and the K_{sp} equilibrium expression for dissolution of:

10. Label any species that are acting as Lewis acids (LA), Lewis bases (LB), Bronsted acids (BA), or Bronsted bases (BB).

$$0 = C = 0$$

$$0 = C = 0$$

$$H - 0$$

$$H - 0$$

$$H - 0$$

In which of the following ways can a water molecule act? Choose all that apply.

11. What is the solubility of Ba₃(PO₄)₂, in moles per liter? $K_{sp} = 1.3 \times 10^{-29}$

$$B_{93}(P0_{4})_{2}(s) \ge 3B_{0}^{24}(a_{0}) + 2P0_{4}^{3}(a_{0})$$

$$E \qquad \qquad 0$$

$$E \qquad 3y \qquad 24$$

$$K_{5}P = 1.3 \times 10^{29} = [Ba^{27}]^{3} [P0_{4}^{3-}]^{2} = (3x)^{3} (2x)^{2} = 108 \times^{5}$$

$$X = \sqrt{\frac{1.3 \times 10^{29}}{108}} = 6.5 \times 10^{7} \qquad \qquad 6.5 \times 10^{7} \qquad \qquad 6.5 \times 10^{7} \qquad \qquad 6.5 \times 10^{7}$$

12. Use the following reaction and the data given to calculate ΔG° at 328 K.

$$2\mathbf{N}\mathbf{H}_{3}(g) + 2\mathbf{O}_{2}(g) \longrightarrow \mathbf{N}_{2}\mathbf{O}(g) + 3\mathbf{H}_{2}\mathbf{O}(l)$$

$$\Delta H^{\circ} = -683.1 \text{ kJ} \text{ and } \Delta S^{\circ} = -365.6 \text{ J/K}$$

$$A^{\circ} = -683.1 \text{ kJ and } \Delta S^{\circ} = -365.6 \text{ J/K}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -683.1 \text{ kJ} - 328 \text{ K} (\bar{0}, 3656 \text{ KJ/K}) = -683.1 \text{ kJ}$$

$$\Delta G^{\circ} = \frac{563.2}{\text{kJ/mol}} \text{kJ/mol}$$

Is the reaction favored at 328 K:

no

In what temperature range is the reaction favored?

no temperatures

favored at 100 temperatures

below 1868 K K Cutoff =
$$\frac{\Delta H^{\circ}}{\Delta s^{\circ}} = \frac{-683.1 \, \text{kJ}}{-0.3656 \, \text{kJ/k}} = 1868 \text{K}$$

13. Ethanol boils at 78 °C with an enthalpy of vaporization of 38.6 kJ/mol.

What is the entropy change for the vaporization of methanol at 78 °C?

14. What is the solubility of Pbl₂ is a 0.25 M solution of Nal, in grams per liter?

Molar mass $Pbl_2 = 461 g/mol$.

$$K_{sp} = 8.7 \times 10^{-9}$$

$$PbI_{2}(s) = Pb^{24} + \lambda I$$
 $I = 0$
 $V = 0.25$
 $V = 0.25$
 $V = 0.25$
 $V = 0.25$

ass PbI₂ = 461 g/mol.
$$K_{sp} = 8.7 \times 10^{-9}$$
 $PbI_{2}(s) \rightleftharpoons Pb^{24} + \lambda I$
 $O = 0.25$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25)^{2}$
 $A = A \times 10^{-9} = (x)(0.25 + 2x)^{2} \approx (x)(0.25$

15. Cu²⁺ forms a complex ion with ammonia:

$$Cu^{2+}(aq) + 4 NH_3(aq) ===== [Cu(NH_3)_4]^{2+}(aq)$$

$$K_f = 2.1 \times 10^{13}$$

Formation of the complex ion is:

moderately favored

not favored

What is the value of K_d , the dissociation constant for the complex ion, $[Cu(NH_3)_4]^{2+}$?

16. Determine ΔH^{o} , ΔS^{o} , ΔG^{o} for the following reaction at 298 K.

$$S(s) + 6 HF(g) \rightarrow SF_6(g) + 3 H_2(g)$$

$$\Delta N^{\circ} = [-1200 + 3(0)] - [0 + 6(-271) kJ/mol = +4/7 kJ/mol]$$

$$\Delta S^{\circ} = [292 + 3(131)] - [32 + 6(174)] J/k.mol = -391 J/k.mol$$

$$\Delta G^{\circ} = [292 kJ/mol + 3(0)] - [0 + 6(-273)] kJ/mol = +533 kJ/mol$$

$$\Delta G^{\circ} = [292 kJ/mol + 3(0)] - [0 + 6(-273)] kJ/mol = +533 kJ/mol$$

$$\Delta H^{\circ} = 4 417 \, \text{KJ/mol}$$

$$\Delta S^{\circ} = -391 \, \text{J/k.me}$$

$$\Delta G^{\circ} = +533 \, \text{KJ/mol}$$