1. Which of the following will create a buffer solution when equal volumes of each solution are mixed? Circle all that apply—there may be more than, one correct answer. | (a) | 0.20 M HNO ₃ | + | 0.10 M H ₂ CO ₃ | |------|-------------------------|---|--| | | | + | 0.10 M NaHCO ₂ | | | 0.20 M HF | | 0.20 M CaF ₂ | | メ(d) | 0.10 M HNO ₃ | + | 0.30 M NaCH ₃ CO ₂ | 2. Identify each of the following solutions as acidic, basic, or pH neutral: | a. NH ₄ NO ₃ | acidic | basic | neutral | |------------------------------------|--------|-------|---------| | b. KNO ₃ | acidic | basic | neutral | | c. H ₃ PO ₄ | acidic | basic | neutral | | d. K ₂ S | acidic | basic | neutral | 3. Which of the following acid-base pairs would be used to create a buffer of pH = 4.62, and which species would be present in higher concentration? Circle the acid-base pair used. | Weak Acid | Conjugate Base | K_a | pK_a | |--------------------------------|-----------------------|-------------------------|--------| | HC2O4- | $C_{7}O_{2}^{2}$ | 6.4×10^{-5} | 4.19 | | H ₂ PO ₄ | $\mathrm{HPO_4}^{2-}$ | 6.2×10^{-8} | 7.21 | | HCO ₃ | CO3 ²⁻ | 4.8 x 10 ⁻¹¹ | 10.32 | Circle one of these: PH> Pka So The conjugate acid will be in higher concentration than the conjugate base. The conjugate base will be in higher concentration than the conjugate acid. **4.** The value of K_a for phenol (a weak acid, C_6H_5OH) is 1.1×10^{-10} . What is the value of K_b , for its conjugate base, $C_6H_5O^-$? What is pKa? In what form will phenol exist at pH = 7: C_6H_5OH or $C_6H_5O^{-1}$ PHK pka so 5. Write the chemical reaction equation described by the K_a value for H_2CO_3 . Write the chemical reaction equation described by the K_b value for NaF. Write the chemical equation described by Kw. 6 **6.** Write the net-ionic equation for the acid-base reaction between HNO_2 and CIO^- : Write the net-ionic equation for the acid-base reaction between HCl and KOH: - 7. What is the conjugate base of H₂PO₄? loss #+ - (a) H_3PO_4 - (b) HPO₄²⁻ - (c) 2 HPO₂ - (d) PO₄³- 8. Which of the following acids has the largest K_a value? H_3AsO_2 H₃AsO₃ H₃AsO 9. Write the formulas of common strong acids: HCI HBr HI HNO2 HC104 H2504 Write the formulas of common strong bases: NaOH LIDH is ok KOH CalOH)2 Ba (OH)2 10. Consider the alpha plot below, which is for an acid-base system HA/A⁻. a. At pH = 11, which species is present in greater concentration? or (A^-) or about the same amount of each b. What is pKa of HA? c. What is K_a of HA? d. If this acid-base pair were a pH indicator, would it be suitable for the titration of NH₄+ with NaOH? Yes pka of NHyt is 9,25. The pka of the indicator must be significantly above plea acid titrated. 11. Calculate the following for a solution that has a pH of 4.68? $$pOH = 9.32$$ - 12. Consider the titration curve below involving a weak acid $(C_2H_7NH^+)$ and a weak base (C_2H_7N) . - a. Which does this titration represent? Circle it. weak acid being titrated with NaOH weak base being titrated with HCl b. What is the approximate value of K_a for the acid form $(C_2H_7NH^+)$ of the studied acid-base pair? For the questions below, answer with C₂H₇NH⁺, C₂H₇NH, H₃O⁺ and/or OH⁻. More than one is allowed. - c. What acid-base species is/are mainly in solution at point A? (2 μ_{7}) - d. What acid-base species is/are mainly in solution at point B? $C_2 H_2 N^7$ and $C_2 H_3 N$ - e. What acid-base species is/are mainly in solution at point C? 13. To what extent does each of the following reaction progress? a) $NH_3 + HCI \rightarrow NH_4^+ + H_2O$ <50% between 50 - 90% ~100% b) $CH_3CO_2H + F^- \rightarrow HF + CH_3CO_2^-$ <50% between 50 - 90% ~100% c) $HNO_3 + KOH \rightarrow H_2O + KNO_3$ <50% between 50 - 90% ~100% 13. What is the pH of a 0.00248 M solution of Ba(OH)₂? $[OH^{-}] = 0.00496$, $[H_{3}d] = 2.02 \times 10^{12}$, $PH = -log(2.02 \times 10^{12}) = 4.695$ What is the pH of a 4.8 x 10⁻⁴ M solution of HNO₃? [H30+] = 4.8×104M, pH = 3.32 What is the pH of a 3.0 M solution of HCI? CH36+] = 3.0M pH=-log(3.0) = -0.48 It is possible to heave regative pH values. 14. What is the pH of a 0.60 M solution of acetic acid? CH3CD2H + H2O = $$N30^{\frac{1}{4}}$$ CH3CO2 $K_0 = 1.8 \times 10^{\frac{5}{5}} = \frac{(x)(x)}{0.60 - x}$ $= 0.60$ $= 0.60 - x$ 15. a) What is the pH of a buffer composed of 1.00 L of 0.400 M HCN and 0.700 M CN-? $$K_a = 4.0 \times 10^{-10}$$ p/ $C_a = 9.400$ $PN = 9.400 + log \left(\frac{0.700 \text{ M}}{0.400 \text{ M}}\right) = 9.400 + 0.243 = 9.643$ b) What is the pH of this buffer after 0.080 mol HCl have been added? $$H_3D^{\dagger} + CN \longrightarrow HCN + H_2D$$ I 0.080 0.700 0.400 C -0.080 -0.080 to.080 F 0 0.630 0.480 (IL of) 11 of 16. What mass of NH₄Cl must be added to a 0.380 M solution of NH₃ to make a buffer of pH = 8.93? $$PK_{a}(NH_{u}^{+}) = -log(5.6 \times 10^{10}) = 9.252$$ $8.93 = 9.252 + log(NH_{u}^{-}) - 0.322 = log(NH_{u}^{-})$ 42.6 g NH₄CI **17.** As temperature rises, the pH of a solution of acetic acid decreases. Is the ionization reaction of acetic acid endothermic, exothermic, or can you not tell from this information? You must show your reasoning. on TI, rxn shifts =>, as evidenced by pH decrease . . Vyn must absorb heat as TT, Non shifts => CH3 OT] T, and pHL 134715