Practice Exam #2

1. For a reactio	n to actually o	ccur, it must be fa	vored by:					
a. therr	a. thermodynamics			c. either thermodynamics or kinetics				
b. kinet	b. kinetics		d. both thermodynamics and kinetics					
2. a) Is the salt	MgSO ₄ more so	oluble in water at	5 °C or at 35 °C	??				
a) more	soluble							
b) less s	b) less soluble							
c) more	c) more information is needed, and that information is:							
b) Describe the states of CO ₂ solubility for a bottle of Diet Coke:								
i) befor	e it is open:	saturated	unsaturated	supersaturated				
ii) just a	ofter opening:	saturated	unsaturated	supersaturated				
iii) aftei	going "flat":	saturated	unsaturated	supersaturated				
iv) in w	hich state is the	e solubility of CO ₂	greater:	before opening	or	after opening		
3. Of the following compounds, which are expected to be highly soluble in water? Circle all that apply.								
	CF ₄	CH₃OH	SH_2	CH₃CH ₃	3			
4. Soap is comp	oosed of surfac	tant molecules. S	urfactant moled	cules are:				
a) hydro	ophilic	b) hydrophobic	ic c) both hydrophilic and hydrophobic					
5. What is the p	orimary reason	water and oil do	not mix?					
a) if the	y did, many str	ong hydrogen bo	nds would need	d to be broken				
b) in order to do so, the water would need to first be vaporized, which requires too much energy								
c) if they did, the entropy of water would decrease markedly								
d) the intermolecular forces between the nonpolar molecules are too strong								

6. The reaction NH₄NCO \rightarrow (NH₂)₂CO was performed and data obtained for the concentration of NH₄NCO over time. The following plots were made from the data.

What is the order of the reaction with respect to NH₄NCO?

- a. zero order alone
- b. first order
- c. second order
- d. cannot be determined from the plots

7. Write the equilibrium constant expression for each reaction:

$$P4(g) + 6 Cl_2(g) \rightleftharpoons 4 PCl_3(g)$$

$$NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(s)$$

8. The equilibrium $2 SO_2Cl_2(g) \rightleftharpoons 2 SO_2(g) + 2 Cl_2(g)$ has an equilibrium constant of K = 22.6. What is the value of K for the equilibrium written as: $SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$?

- (a) 22.6
- (b) 0.0442
- (c) 511
- (d) 0.00196
- (e) 0.210

9. The following reaction is 2nd-order in NO₂ in and zero-order in CO. Write the rate law for the reaction.

$$NO_2 + CO \longrightarrow NO + CO_2$$

$$NO_2 + CO \longrightarrow NO + CO_2$$
 Rate = _____

10. Two mechanisms are proposed for the reaction,

$$(CH_3)_2C=CH_2 + H_2O \rightarrow (CH_3)_3COH$$

Mechanism A: Step 1.
$$(CH_3)_2C=CH_2 + H_2O \rightarrow (CH_3)_3COH$$

Mechanism B: Step 1.
$$(CH_3)_2C=CH_2 + H^+ \rightarrow (CH_3)_3C^+$$
 (slow)

Step 2.
$$(CH_3)_3C^+ + H_2O \rightarrow (CH_3)_3COH + H^+$$
 (fast)

The experimentally determined rate law is: Rate = $k[(CH_3)_2C=CH_2][H^+]$

Which mechanism is supported by the experimental evidence?

- a. Mechanism A
- b. Mechanism B
- c. neither mechanism
- d. both

mechanisms

11. Initial rate data was found for the following reaction:

$$2 UO_2^+ + 4 H^+ \longrightarrow U^{4+} + UO_2^{2+} + 2 H_2O$$

Experiment	[UO2 ⁺] ₀ , M	$[\mathbf{H}^{+}]_{0}$, M	Initial Rate, Ms ⁻¹
1	2.85E-3	0.452	5.29
2	5.70E-3	0.452	21.1
3	2.85E-3	0.904	10.6
4	5.70E-3	0.904	42.3

What is the rate law for the reaction?

a. rate =
$$k[UO_2^+][H^+]$$

c. rate =
$$k[UO_2^+]^2[H^+]$$

b. rate =
$$k[UO_2^+]^2[H^+]^4$$

d. rate =
$$k[UO_2^+][H^+]/[U^{4+}][UO_2^{2+}]$$

12. Using the reaction coordinate diagram below, determine the activation energy and type of enthalpy change for the reaction.

- a. E_a = 392 kJ, endothermic
- c. E_a = 411 kJ, endothermic
- b. $E_a = 392 \text{ kJ}$, exothermic
- d. E_a = 411 kJ, exothermic

13. The following mechanism is proposed for a reaction:

- Step 1: $NO_2Cl \rightarrow NO_2 + Cl$
- Step 2: $CI + NO_2CI \rightarrow NO_2 + CI_2$

Write the overall reaction:

What is the molecularity of Step 2:

Give formulas of intermediates (if none, enter "none):

Give formulas of catalysts (if none, enter "none):

14. The reaction coordinate diagram for a reaction and its concentration-time curve are shown for the reaction run at 25 °C.

- a. draw a curve on the left plot that has a lower activation energy.
- b. draw a curve on the right plot for the reaction run if the activation energy were lower. Label it ${\bf L}$.
 - c. draw a curve on the right plot for the reaction run at lower temperature. Label it **C**.
 - d. If the energy of the products (**B** in the left plot) were lower, the reaction rate would be:

faster slower the same

Long Answer Questions: Show Your Work

15. A reaction has the following measured rate constants at two temperatures.

What is the activation energy?

$$k = 54.0 \text{ s}^{-1} \text{ at } 300 \text{ K}$$

16. Consider the system, $2 \text{ CH}_2\text{Cl}_2(g) \rightleftarrows \text{ CH}_4(g) + \text{CCl}_4(g)$, which has an equilibrium constant of K = 2.4. If a system has:

$$[CH_2Cl_2] = 0.22 M$$

 $[CH_4] = 1.64 M$
 $[CCl_4] = 0.58 M$

What is the value of Q?	

Then choose what will happen:

- (a) the system is at equilibrium
- (b) the system is not at equilibrium and will react to form more CH₂Cl₂
- (c) the system is not at equilibrium and will react to form more CH₄ and CCl₄

17. The half-life of U-238 is 4.5×10^9 years. When U-238 decays it undergoes a series of reactions to form Pb-207.

238
U \rightarrow \rightarrow 207 Pb

If a rock is found that contains 0.384 g U-238 and 0.122 g Pb-207. If we assume that all the Pb-207 originated by decay of the uranium, how old is the rock?

You can assume the molar masses of the isotopes equal their mass numbers.

- **18.** What is the conjugate base of $H_2PO_4^-$?

 - (a) H_3PO_4 (b) HPO_4^{2-} (c) $2 HPO_2$ (d) PO_4^{3-}

19. Write the formulas of common strong acids:

Write the formulas of common strong bases:

20. Calculate the following for a solution that has a pH of 4.68?

 $[H_3O^+] = \underline{\hspace{1cm}} mol/L$

[OH⁻] = _____ mol/L

pOH = _____

21. What is the pH of a 0.00248 M solution of Ba(OH)₂?

What is the pH of a 4.8×10^{-4} M solution of HNO₃?

What is the pH of a 3.0 M solution of HCl?

Equations and Constants

$$[\mathbf{A}]_t = [\mathbf{A}]_0 - kt$$

$$t_{1/2}=rac{[\mathrm{A}]_0}{2k}$$

$$\lnrac{[\mathrm{A}]_t}{[\mathrm{A}]_0}=-kt$$

$$t_{1/2}=\frac{0.693}{k}$$

$$[A]_t = [A]_o e^{-kt}$$

$$rac{1}{[{
m A}]_t} = rac{1}{[{
m A}]_0} + kt \hspace{1cm} t_{1/2} = rac{1}{k[{
m A}]_0}$$

$$t_{1/2} = rac{1}{k[{
m A}]_0}$$

$$\ln\frac{k_2}{k_1} = \frac{-E_\mathrm{a}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$k = Ae^{-E_a/RT}$$

$$pOH = -log[OH^{-}]$$

pH = -log[H₃O⁺]

 $[H_3O^+] = 10^{-pH}$

$$[OH^{-}] = 10^{-pOH}$$

$$K_w = 1.0 \times 10^{-14}$$
 at 25 °C

$$K_{\mathrm{p}} = K_{\mathrm{c}} (RT)^{\Delta n}$$

$$\ln\!\left(rac{K_2}{K_1}
ight) = -rac{\Delta H^\circ}{R}\left(rac{1}{T_2} - rac{1}{T_1}
ight)$$

$$K = \frac{\left[\mathbf{C}\right]^{c} \left[\mathbf{D}\right]^{d}}{\left[\mathbf{A}\right]^{a} \left[\mathbf{B}\right]^{b}}$$

$$K_{
m p} = K_{
m c} (RT)^{\Delta n}$$

When an equilibrium equation is multiplied by a constant, n,

$$K_{
m new} = (K_{
m old})^n$$

When an equilibrium equation is written in the reverse direction,

$$K_{
m new} = rac{1}{K_{
m old}}$$

When two equations representing equilibrium systems are added together,

$$K_{
m new} = K_1 imes K_2$$

$$Q = \frac{\left[\mathbf{C}\right]^{c} \!\left[\mathbf{D}\right]^{d}}{\left[\mathbf{A}\right]^{a} \!\left[\mathbf{B}\right]^{b}}$$