Sections 12.4 – 12.5 Intermolecular Forces

Intermolecular Forces

In these sections...

a. Types of Intermolecular Forces

- 1. Dipole Dipole Forces
- 2. Hydrogen Bonding
- 3. Dipole-Induced Dipole Forces
- 4. Induced Dipole Induced Dipole Forces

b. Relating Molecular Structure, IMFs,

and Properties of Liquids

When near a cold surface, gas phase water molecules condense to form a liquid. Why does this happen?

Intermolecular Forces: Summary

All due to attraction of opposite charges on adjacent molecules.

Compare with covalent bonds 250 - 400 kJ/mol

Туре	Origin	Relative Strength
Dipole-Dipole	Partial charges on two polar molecules.	≈2-10 kJ/mol
Hydrogen Bonding (a special case of dipole- dipole force)	Partial charges resulting from N-H, O-H, or F-H bonds on adjacent molecules.	25-50 kJ/mol
Dipole-Induced Dipole	Partial charges on one molecule inducing partial charges on a nonpolar molecule	
Induced Dipole-Induced Dipole	Two nonpolar molecules inducing momentary partial charges when near each other	<5 kJ/mol for small molecules

Intermolecular Forces vs. Covalent Bonds

What happens to liquid water when it boils?

What does *NOT* happen to liquid water when it boils?

Dipole – Dipole Forces

Partial charges on two polar molecules attract.

Hydrogen Bonding: Really Strong Dipole – Dipole Forces

Occurs when a molecule has one of these bonds:

N-H Why? O-H F-H Hydrogen Bonding: Really Strong Dipole – Dipole Forces

Occurs when a molecule has one of these bonds:

N-HO-HF-HFor which of these compounds ishydrogen bonding expected?

Hydrogen Bonding: Really Strong Dipole – Dipole Forces

Occurs when a molecule has one of these bonds: N-H

O-H

F-H Which are stronger: hydrogen bonds or normal covalent bonds?

Dipole – Induced Dipole Forces

Partial charges on one molecule inducing partial charges on a nonpolar molecule.

Induced Dipole – Induced Dipole Forces

Two nonpolar molecules inducing momentary partial charges when near each other.

These forces are also called: London Dispersion Forces, or just Dispersion Forces.

Return to: Properties of Liquids

Enthalpy of Vaporization: Energy required to vaporize a liquid.

Vapor Pressure: The gas pressure of a vapor (a vapor is a gas that comes from a liquid vaporizing.)

Boiling Point: Temperature at which vapor pressure reaches external atmospheric pressure.

Surface Tension: The tendency of a liquid surface to resist change.

Viscosity: The resistance of a liquid to flowing.

These properties all depend on IMF strength.

Return to: Properties of Liquids

These properties all depend on IMF strength.

As IMF Strength **Increases**:

Enthalpy of Vaporization: increases

Vapor Pressure: decreases

Normal Boiling Point: increases

Surface Tension: increases

Viscosity:

kind of increases, but not always

Different Liquids have Different Properties

Which has stronger IMFs?

IMF Trends: Dispersion Forces

These forces arise from electron clouds being "polarized."

Dispersion force strength increases with increasing "polarizability."

Polarizability increases with increasing atom or molecular size.

IMF Trends: Dispersion Forces

Table 11.5.1 Molar Mass, ΔH°_{vap} , and Boiling Point for Some Nonpolar Species							
Compound	Molar Mass (g/mol)	ΔH° _{vap} (kJ/mol)	Boiling Point (°C)				
He	4.0	0.08	-268.9				
Ne	20.3	1.7	-246.1				
N_2	28.0	5.6	-195.8				
O_2	32.0	6.8	-183.0				
Ar	39.9	6.4	-185.9				
Cl_2	70.9	20.4	-34.0				
Br_2	159.8	30.0	58.8				

As molecule size increases, IMF strength increases.

IMF Trends: Dispersion Forces

Table 11.5.2Selected Physical Propertiesof Some Hydrocarbons

Molecular Formula	Name	ΔH°_{vap} (kJ/mol)	Boiling Point (°C)
CH_4	Methane	8.2	-161
C_2H_6	Ethane	14.7	-88
C_3H_8	Propane	19.0	-42
$\mathrm{C_6H_{14}}$	Hexane	28.9	69
$\mathrm{C_8H_{18}}$	Octane	34.4	126
$\mathrm{C_{10}H_{22}}$	Decane	38.8	174
$\mathrm{C_{18}H_{38}}$	Octadecane	54.5	317

As molecule size increases, IMF strength increases.

IMF Trends: Dipole – Dipole Forces

Dipole forces are stronger than corresponding induced dipole forces.

Table 11.5.3 Molar Masses and Boiling Points of Some Polar and Nonpolar Substances							
Nonpolar		Polar					
	Molar Mass (g/mol)	Boiling Point (°C)		Molar Mass (g/mol)	Boiling Point (°C)		
N_2	28	-196	со	28	-192		
SiH_4	32	-112	PH_3	34	-88		
${\rm GeH}_4$	77	-90	AsH_3	78	-62		
Br_2	160	59	ICl	162	97		

But the effect is not that large, unless ...

IMF Trends: Hydrogen Bonding

Compounds with hydrogen bonding have much stronger IMFs than compounds of similar size.

IMF Trends: Hydrogen Bonding

Compounds with hydrogen bonding have much stronger IMFs than compounds of similar size.

All Compounds Experience Dispersion Forces Even if they are polar

This molecule experiences hydrogen bonding, but its large size means its properties are controlled by its dispersion forces.

