Section 13.5 Phase Diagrams

Bill Vining SUNY Oneonta

Phase Diagrams

In this section...

a. Phase changes involving solids

- b. Phase diagrams as predictors of phase
- c. Supercritical Fluids
- d. Phase diagrams as predictors of phase changes

Phase changes involving solids

	$\Delta H_{\rm fusion}$ (kJ/mol)	Melting Point (°C)	$\Delta H_{\rm vap}$ (kJ/mol)	Boiling Point (°C)
Methane	0.94	-182.5	8.2	-161.6
Ethane	2.86	-182.8	14.7	-88.6
Propane	3.53	-187.6	19.0	-42.1
Methanol	3.16	-97.0	35.3	64.7
Ethanol	5.02	-114.3	38.6	78.4
1-Propanol	5.20	-127	41.4	97.2
Water	6.01	0.0	40.7	100.0
Na	2.60	97.82	97.42	881.4
NaBr	26.11	755	160.7	1390

Table 12.5.1: Selected Heats of Fusion and Vaporization at the Temperature of the Normal Phase Transition

Phase changes involving solids

Solid

Phase Diagram for Water

Phase diagrams as predictors of phase

Figure 12.5.3 The phase diagram for carbon dioxide

Above the critical temperature, the gas has too much kinetic energy for a liquid to form, regardless of the external pressure.

Below the critical pressure, a gas is an impermanent gas because it can be liquefied by applying pressure.

Above the critical pressure, a gas is a permanent gas because it can not be liquefied, no matter how great the pressure.

Supercritical Fluids

Table 12.5.2Selected Critical Temperaturesand Pressures

	Critical Temperature (°C)	Critical Pressure (atm)
NH ₃	132.5	111.5
Ar	-122.4	48.1
Br_2	310.8	102
Cl_2	143.8	76.0
F_2	-128.85	51.5
He	-267.96	2.24
H_2	-239.95	12.8
Kr	-63.8	54.3
CH_4	-82.1	45.8
Ne	-228.75	27.2
N_2	-146.9	33.5
O_2	-118.6	49.8
SO_2	157.8	77.7
H ₂ O	373.936	217.7
Xe	16.6	57.6

Phase diagrams as predictors of phase changes

