Section 14.2 and 14.3 Control of Solubility

Bill Vining SUNY Oneonta

Control of Solubility

In these sections...

Molecular structure control:

- a. Entropy and thermodynamic control
- b. Gas mixtures
- c. Mixtures of neutral molecules in liquids d. Mixtures of ionic compounds in water

External (conditions) control:

- a. pressure
- b. temperature

Enthalpy and Entropy

Enthalpy: Bond strength- stronger bonds = lower enthalpy = more stable

Entropy: Free motion of atoms- freer mobility = higher entropy = more stable

Table 13.2.1 Entropy, Enthalpy, and Dissolution			
	Positive Enthalpy Change (Reduction in Strength of IMFs)	Negative Enthalpy Change (Increase in Strength of IMFs)	
Positive Entropy Change (Increase in Mobility of Particles)	Favored at higher temperatures	Favored at all temperatures	
Negative Entropy Change (Reduction in Mobility of Particles)	Disfavored at all temperatures	Favored at lower temperatures	

Example: Enthalpy and Entropy of Evaporation

Gaseous state: more dispersed, weaker IMFs ~ (entropy favored, enthalpy disfavored)

Liquid state: less dispersed, stronger IMFs (entropy disfavored, enthalpy favored)

A molecular-scale view of evaporation

Enthalpy and Entropy Control of Dissolution

Gas Mixtures

Liquid-Liquid Mixtures

Predicting Miscibility of Two Liquids

For now, we are examining molecular compounds- not ionic compounds.

General rules:

- 1. polar solutes dissolve in polar solvents
- 2. nonpolar solutes dissolve in nonpolar solvents

"Like dissolves Like"

Oil and water don't mix: is oil polar or nonpolar?

Hydrophobic groups: Long hydrocarbon groups: CH₃CH₂CH₂CH₂CH₂CH₂CH₂ Examples: CH₃CH₂CH₂CH₂CH₂CH₃ CH₃CH₂CH₂CH₂CH₂CI

Examples: CH₃OH, NH3, H-O-O-H

–OH and –NH groups

<u>Hydrophilic groups</u>:

Which of these will not dissolve in water?

1. NH₃

2. CH₃CH₃

3. CH_3OH

Which of these is least soluble in water?

- 1. CH_3OH
- 2. $CH_3CH_2CH_2OH$
- 3. $CH_3CH_2CH_2CH_2OH$

Why don't oil and water mix?

What controls Solubility:

Enthalpy (enthalpy of solution)

Negative if new forces are stronger than original forces

Entropy

Depends on the entropy change of both the water and the solute.

Assume they mix fully

Assume water retains its hydrogen bonds

Explanation #2

delta H would be: _____ delta S would be: _____

Which is it?

Experiments show mixing water and oil has:

- ΔH close to zero
- ΔS highly negative

Control of Solubility of Ionic Compounds

Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds*	Notable Exceptions		
All sodium (Na ⁺), potassium (K ⁺), and ammonium (NH ₄ ⁺) salts			
All nitrate (NO ₃ ⁻), acetate (CH ₃ CO ₂ ⁻), chlorate (ClO ₃ ⁻), and perchlorate (ClO ₄ ⁻) salts			
All chloride (Cl ⁻), bromide (Br ⁻), and iodide (I ⁻) salts	Compounds also containing lead, silver, or mercury(I) (Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺) are insoluble.		
All fluoride (F ⁻) salts	Compounds also containing calcium, strontium, barium, or lead (Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺) are insoluble.		
All sulfate (SO ₄ ²⁻) salts	Compounds also containing calcium, mercury(I), strontium, barium, or lead (Ca ²⁺ , Hg ₂ ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺) are insoluble.		
Insoluble Ionic Compounds	Exceptions		
Hydroxide (OH ⁻) and oxide (O ²⁻) compounds	Compounds also containing sodium, potassium, or barium (Na ⁺ , K ⁺ , Ba ²⁺) are soluble.		
Sulfide (S ^{2–}) salts	Compounds also containing sodium, potas- sium, ammonium, or barium (Na ⁺ , K ⁺ , NH ₄ ⁺ , Ba ²⁺) are soluble.		
Carbonate (CO ₃ ²⁻) and phosphate (PO ₄ ³⁻) salts	Compounds also containing sodium, potassium, or ammonium (Na ⁺ , K ⁺ , NH ₄ ⁺) are soluble.		

Control of Solubility of Ionic Compounds

Molecular-scale view of the dissolution of K_2SO_4 in water

Enthalpy Control

Table 13.2.2 Enthalpies of Hydration of Selected Metal Cations (kJ/mol)								
+1 Ions		+2 Ions			+3 Ions			
Ion	Radius (pm)	$\Delta H_{ m hyd}$	Ion	Radius (pm)	$\Delta H_{ m hyd}$	Ion	Radius (pm)	$\Delta H_{ m hyd}$
\mathbf{Cs}	181	-263	Ra		-1259	La	117	-3283
Rb	166	-296	Ba	149	-1304	Lu	100	-3758
Κ	152	-321	Sr	132	-1445	Y	104	-3620
Na	116	-405	Ca	114	-1592	Sc	88	-3960
Li	90	-515						
Η		-1091						

Hydration Numbers of Some Hydrated Ions

Entropy	Control
---------	---------

Ion	Hydration number	Ion	Hydration number
Li+	22	Mg^{2+}	36
Na ⁺	13	Ca ²⁺	29
K+	7	Sr^{2+}	29
Cs^+	6	Ba ²⁺	28
		Cd^{2+}	39
		Zn ²⁺	44

Control of Solubility of Ionic Compounds

Enthalpy: lattice energies and hydration energies follow same trends and mostly offset

Entropy: smaller ions and ions of high charge have larger hydration spheres and are entropy disfavored from dissolving

Molecular-scale view of the dissolution of K_2SO_4 in water

Control of Solubility of Ionic Compounds

Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds*	Notable Exceptions	
All sodium (Na ⁺), potassium (K ⁺), and ammonium (NH ₄ ⁺) salts		
All nitrate (NO ₃ ⁻), acetate (CH ₃ CO ₂ ⁻), chlorate (ClO ₃ ⁻), and perchlorate (ClO ₄ ⁻) salts		
All chloride (Cl ⁻), bromide (Br ⁻), and iodide (I ⁻) salts	Compounds also containing lead, silver, or mercury(I) (Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺) are insoluble.	
All fluoride (F ⁻) salts	Compounds also containing calcium, strontium, barium, or lead (Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺) are insoluble.	
All sulfate (SO ₄ ²⁻) salts	Compounds also containing calcium, mercury(I), strontium, barium, or lead (Ca ²⁺ , Hg ₂ ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺) are insoluble.	
Insoluble Ionic Compounds	Exceptions	
Hydroxide (OH ⁻) and oxide (O ²⁻) compounds	Compounds also containing sodium, potassium, or barium (Na ⁺ , K ⁺ , Ba ²⁺) are soluble.	
Sulfide (S ^{2–}) salts	Compounds also containing sodium, potas- sium, ammonium, or barium (Na ⁺ , K ⁺ , NH ₄ ⁺ , Ba ²⁺) are soluble.	
Carbonate (CO ₃ ²⁻) and phosphate (PO ₄ ³⁻) salts	Compounds also containing sodium, potassium, or ammonium (Na+, K+, NH ₄ +) are soluble.	

External Control of Solubility

Pressure Effects: Solubility of Gases in Liquids

As P of a gas increases, its solubility increases.

Henry's Law:

$$S = k_{\rm H} \times P$$

What is the solubility of O_2 under a pressure of 0.66 atm?

Table 13.3.1 Some Henry's Law Constants for the Solubility of Gases in Water (25 °C)		
Gas	$k_{ m H}$ (mol/L \cdot atm) at 25 °C	
N_2	6.47×10^{-4}	
O_2	1.28×10^{-3}	
CO_2	3.36×10^{-2}	
He	3.26×10^{-4}	

External Control of Solubility

Temperature Effects

In general,

- if $\Delta H_{dissolution}$ is exothermic, solubility decreases as temperature increases
- if $\Delta H_{dissolution}$ is exothermic, solubility decreases as temperature increases

Figure 13.3.4 Solubility of oxygen in water at various temperatures

In general, but not always:

- if $\Delta H_{dissolution}$ is exothermic, solubility decreases as temperature increases
- if $\Delta H_{dissolution}$ is endothermic, solubility increases as temperature increases

 $\text{Li}_2\text{SO}_4(s) \rightarrow \text{Li}_2\text{SO}_4(aq)$ $\Delta H^\circ = -29.8 \text{ kJ/mol}$

 $LiCl(s) \rightarrow LiCl(aq)$ $\Delta H^{\circ} = -37.0 \text{ kJ/mol}$

What do we expect for ammonium nitrate?

 $\mathrm{NH}_4\mathrm{NO}_3(\mathrm{s}) \rightarrow \mathrm{NH}_4\mathrm{NO}_3(\mathrm{aq}) \qquad \Delta H^\circ = +25.7 \text{ kJ/mol}$

