Section 15.5 Activation Energy and Temperature

Activation Energy and Temperature

In this section...

- a. Reaction coordinate diagrams
- b. The Arrhenius equation
- c. Temperature, E_a and k
- d. Graphical determination of Ea

Reaction Coordinate Diagrams

Numerical connection between E_a and ΔE

Activation Energy, Temperature and Rate

Activation Energy, Temperature and Rate

Trends:

- As E_a decreases, rate increases
- As T increases, rate increases

Why do reactions go faster at higher temperature?

Why do reactions go faster with lower activation energy?

The Arrhenius Equation

$$k = Ae^{-E_a/RT}$$

k = rate constant

A = frequency factor

 E_a = activation energy

 $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$

T = temperature (K)

Trends:

As T个:

As $E_a \uparrow$:

The Arrhenius Equation: Two Point Version

$$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

 k_1 = rate constant at temperature 1

 k_2 = rate constant at temperature 2

 T_1 = temperature 1 (K)

 T_2 = temperature 2 (K)

 E_a = activation energy

 $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$

General Use:

There are five variables. If you know 4 of Them you can solve for the 5th.

The Arrhenius Equation: Two Point Version

The activation energy for the gas phase decomposition of *t*-butyl propionate is 164 kJ.

$$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$C_2H_5COOC(CH_3)_3(g) \rightarrow (CH_3)_2C=CH_2(g) + C_2H_5COOH(g)$$

The rate constant for this reaction is 3.80×10^{-4} s⁻¹ at 528 K. What is the rate constant at 569 K?

The Arrhenius Equation: Two Point Version

The rate of a reaction triples when the temperature is increased from 280 °C to 300 °C. $\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ What is the activation energy?

$$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

The Arrhenius Equation: Graphical Determination of Ea

$$k = Ae^{-E_a/RT}$$

k = rate constant

A = frequency factor

 E_a = activation energy

 $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$

T = temperature (K)

$$\ln(k) = \ln(A) - \frac{E_a}{R} \frac{1}{T}$$

$$y = b + m x$$

Collect k vs. temperature data

Plot ln(k) vs. 1/TE_a = - slope x R

Graphical Determination of E_a

$$N_2O_5(g) \rightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$$

Temperature (K)	k (s ⁻¹)
298	3.46×10^{-5}
328	1.50×10^{-3}
358	3.34×10^{-2}
378	0.210

$$\ln(k) = \ln(A) - \frac{E_a}{R} \frac{1}{T}$$

