Section 15.5 Activation Energy and Temperature ## Activation Energy and Temperature In this section... - a. Reaction coordinate diagrams - b. The Arrhenius equation - c. Temperature, E_a and k - d. Graphical determination of Ea ### Reaction Coordinate Diagrams ## Numerical connection between E_a and ΔE # Activation Energy, Temperature and Rate # Activation Energy, Temperature and Rate ### Trends: - As E_a decreases, rate increases - As T increases, rate increases ### Why do reactions go faster at higher temperature? # Why do reactions go faster with lower activation energy? ### The Arrhenius Equation $$k = Ae^{-E_a/RT}$$ *k* = rate constant A = frequency factor E_a = activation energy $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$ T = temperature (K) Trends: As T个: As $E_a \uparrow$: ### The Arrhenius Equation: Two Point Version $$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$ k_1 = rate constant at temperature 1 k_2 = rate constant at temperature 2 T_1 = temperature 1 (K) T_2 = temperature 2 (K) E_a = activation energy $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$ #### General Use: There are five variables. If you know 4 of Them you can solve for the 5th. ### The Arrhenius Equation: Two Point Version The activation energy for the gas phase decomposition of *t*-butyl propionate is 164 kJ. $$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$ $$C_2H_5COOC(CH_3)_3(g) \rightarrow (CH_3)_2C=CH_2(g) + C_2H_5COOH(g)$$ The rate constant for this reaction is 3.80×10^{-4} s⁻¹ at 528 K. What is the rate constant at 569 K? ### The Arrhenius Equation: Two Point Version The rate of a reaction triples when the temperature is increased from 280 °C to 300 °C. $\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ What is the activation energy? $$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$ # The Arrhenius Equation: Graphical Determination of Ea $$k = Ae^{-E_a/RT}$$ *k* = rate constant A = frequency factor E_a = activation energy $R = \text{gas constant } (8.3145 \text{ J/K} \cdot \text{mol})$ T = temperature (K) $$\ln(k) = \ln(A) - \frac{E_a}{R} \frac{1}{T}$$ $$y = b + m x$$ Collect k vs. temperature data Plot ln(k) vs. 1/TE_a = - slope x R # Graphical Determination of E_a $$N_2O_5(g) \rightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$$ | Temperature (K) | k (s ⁻¹) | |-----------------|-----------------------| | 298 | 3.46×10^{-5} | | 328 | 1.50×10^{-3} | | 358 | 3.34×10^{-2} | | 378 | 0.210 | $$\ln(k) = \ln(A) - \frac{E_a}{R} \frac{1}{T}$$