Section 15.6 Reaction Mechanisms and Catalysis

Bill Vining SUNY Oneonta

Reaction Mechanisms and Catalysis

In this section...

a. Elementary steps and reaction mechanisms

- b. Reaction mechanisms and rate laws
- c. More complex mechanisms
- d. Catalysis

A reaction mechanism is a series of elementary steps

Reaction Mechanisms: The pathway by which a reaction proceeds from reactants to products.

- Each discrete chemical event is an "elementary step."
- The reaction is a series of elementary steps.
- Steps are usually unimolecular or bimolecular.
- The overall reaction is the *sum* of the steps.
- Each elementary step goes at its own rate.
- The rate of the overall reaction is the rate of the slowest (rate determining) step.

Overall Reactions, Intermediates and Catalysts

Overall reaction: sum of all the elementary steps

Intermediate: Formed in one step, and then used in a later step

Catalyst: Used in one step, and then reproduced in a later step

Overall Reactions:		
Step 1. Step 2.	Unimolecular Bimolecular	$0_3(g) \rightarrow 0_2(g) + 0(g)$ $0_3(g) + 0(g) \rightarrow 2 \ 0_2(g)$
Overall Reaction:		

Intermediates and Catalysts

$$\begin{split} & 2 \ \text{NO}(g) \rightarrow \text{N}_2\text{O}_2(g) \\ & \text{N}_2\text{O}_2(g) + \text{H}_2(g) \rightarrow \text{N}_2\text{O}(g) + \text{H}_2\text{O}(g) \\ & \text{N}_2\text{O}(g) + \text{H}_2(g) \rightarrow \text{N}_2(g) + \text{H}_2\text{O}(g) \end{split}$$

Overall Reaction:

Intermediates:

Catalysts:

Intermediates and Catalysts

Step 1.	$H_2O_2(aq) + I^{-}(aq) \longrightarrow IO^{-}(aq) + H_2O(I)$	
Step 2.	$H_2O_2(aq) + IO^-(aq) \longrightarrow I^-(aq) + H_2O(I) + O_2(g)$)

Overall Reaction:

Intermediates:

Catalysts:

Intermediates vs. Transition States/Activated Complex

Step 1. $H_2O_2(aq) + I^{-}(aq) \longrightarrow IO^{-}(aq) + H_2O(I)$

Step 2.
$$H_2O_2(aq) + IO^-(aq) \longrightarrow I^-(aq) + H_2O(I) + O_2(g)$$

Mechanisms and Rate Laws: Rate Laws for Elementary Steps

Unlike an overall reaction, the rate law for a single elementary step can be discerned from the reaction equation:

			Order of
Example	Rate Law	Molecularity	Elementary Step
$A \rightarrow products$	rate = $k[A]$	Unimolecular	First order
$A + B \rightarrow products$	rate = $k[A][B]$	Bimolecular	Second order
$2 \text{ A} \rightarrow \text{products}$	rate = $k[A]^2$		
$A + B + C \rightarrow products$	rate = $k[A][B][C]$	Termolecular	Third order
$2 \text{ A} + \text{B} \rightarrow \text{products}$	rate = $k[\mathbf{A}]^2[\mathbf{B}]$		
$3 A \rightarrow \text{products}$	rate = $k[A]^3$		

Overall rate = Rate of the slowest step (rate determining step: RDS)

Mechanisms and Rate Laws: Predicting Rate Law from Mechanisms

Overall rate = Rate of the slowest step (rate determining step: RDS)

Step 1.
$$H_2O_2(aq) + I^{-}(aq) \longrightarrow IO^{-}(aq) + H_2O(I)$$
 (slow)

Step 2.
$$H_2O_2(aq) + IO^2(aq) \longrightarrow I^2(aq) + H_2O(I) + O_2(g)$$
 (fast)

Mechanisms and Rate Laws: Testing Mechanisms

Predict the rate law for a mechanism and see if it matches the experimental rate law.

- If the two disagree, the mechanism is incorrect.
- If the two agree, the mechanism might be correct, but you never really know for sure

Mechanisms and Rate Laws: Testing Mechanisms Example

Overall reaction and experimental rate law:

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ Rate = $k[NO_2]^2$

Two proposed mechanisms:

Mechanism A

Step 1. $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ Rate-determining slow step

• Mechanism B

Step 1. $2 \operatorname{NO}_2(g) \rightarrow \operatorname{NO}_3(g) + \operatorname{NO}(g)$ Rate-determining slow step

Step 2. $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$ Fast second step

Catalysts and Rate Laws

Overall Reaction:

Rate Law:

Rate Laws for Complex Mechanisms:

Experimental rate law can't use intermediates

Step 1. $\operatorname{Br}_2(g) \xrightarrow{k_1}{\leftarrow k_{-1}} 2 \operatorname{Br}(g)$ Fast in both directionsStep 2. $\operatorname{Br}(g) + \operatorname{H}_2(g) \xrightarrow{k_2} \operatorname{HBr}(g) + \operatorname{H}(g)$ SlowStep 3. $\operatorname{H}(g) + \operatorname{Br}_2(g) \xrightarrow{k_3} \operatorname{HBr}(g) + \operatorname{Br}(g)$ Fast

Key: In step 1, the forward and reverse rates are equal (they are in equilibrium)

Catalysis for Increasing Reaction Rate

Alternative mechanism is provided with a lower activation energy.

Energy А в 1.0 [A] mol/L 0 time 3000 n

uncatalyzed reactions

Catalysis for Increasing Selectivity

Favor one pathway (and therefore one product) over another:

Homogeneous vs. Heterogeneous Catalysis

Homogeneous: catalyst and reactants in solution Heterogeneous: reaction occurs on a catalytic surface

