Sections 16.1-2 Equilibrium and the Equilibrium Constant

Bill Vining SUNY Oneonta

Equilibrium and the Equilibrium Constant

In these sections...

- a. Microscopic reversibility
- b. The equilibrium state
- c. Equilibrium expressions
- d. Nature of the equilibrium constant
- e. Manipulating equilibrium expressions

Microscopic Reversibility

Any elementary step can proceed in either the forward direction or the reverse direction.

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow FeSCN^{2+}(aq)$

 $FeSCN^{2+}(aq) \rightarrow Fe^{3+}(aq) + SCN^{-}(aq)$

Microscopic Reversibility

The Equilibrium State

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow FeSCN^{2+}(aq)$

 $FeSCN^{2+}(aq) \rightarrow Fe^{3+}(aq) + SCN^{-}(aq)$

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$

The Equilibrium Constant, K (also written K_{eq})

<u>Forward reaction</u>: $Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow FeSCN^{2+}(aq)$

Rate = $K_f[Fe^{3+}][SCN^{-}]$

<u>Reverse reaction</u>: FeSCN²⁺(aq) \rightarrow Fe³⁺(aq) + SCN⁻(aq)

Rate = K_r [FeSCN²⁺]

at equilibrium, forward rate = reverse rate

SO

 $K_{f}[Fe^{3+}][SCN^{-}] = K_{r}[FeSCN^{2+}]$

We rewrite this:
$$K =$$

$$K = \frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]}$$

All solutions at equilibrium will have this ratio of concentrations.

- It doesn't matter if you start with reactants or with products.
- It doesn't matter which is the limiting reactant.
- All equilibrium solutions will have the same ratio of concentrations.
- But, not all solutions have the same concentrations.
- Solutions can have a different ratio of

concentrations, but they're not at equilibrium.

The Meaning of K

Overall reaction: sum of all the elementary steps

Intermediate: Formed in one step, and then used in a later step

Catalyst: Used in one step, and then reproduced in a later step

Overall Reactions:			
Step 1.	Unimolecular	$0_3(g) \rightarrow 0_2(g) + 0(g)$	
Step 2.	Bimolecular	$0_3(g) + 0(g) \rightarrow 2 \ 0_2(g)$	
Overall Reaction:			

The Meaning of K

System 1: Large K; Product Favored System 2: Small K; Reactant Favored Writing Equilibrium Expressions

$a + b \to c + d D$

$$K = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$$

Rules:

- Products over reactants, raised to stoichiometric powers
- Solids and bulk solvents not included in the equilibrium expression

Writing Equilibrium Expressions: Examples

 $H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)$

$C(s) + H_2O(g) \rightleftharpoons H_2(g) + CO(g)$

$CH_3CO_2H(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CH_3CO_2^-(aq)$

Equilibrium Constants for Gases: K_p vs. K_c

$$K_p = K_c (RT)^{\Delta n}$$

Calculate K_p for the following reaction:

2 NOBr(g) \rightleftharpoons 2 NO(g) + Br₂(g) K_c = 6.50 x 10⁻³ at 298 K

Manipulating Equilibrium Constants

Rules:

- Multiply reaction by a constant, raise K to the power of that constant
- Reverse a reaction, take inverse of K
- Add two reactions, K is the product of the K's of those reactions

Example: $2 \text{ NOBr(g)} \rightleftharpoons 2 \text{ NO(g)} + \text{Br}_2(g)$ $K_c = 6.50 \times 10^{-3} \text{ at } 298 \text{ K}$

What is K for: NOBr(g) \rightleftharpoons NO(g) + $\frac{1}{2}$ Br₂(g)

Manipulating Equilibrium Constants

• Reverse a reaction, take inverse of K

Example: $2 \operatorname{NOBr}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$ $K_c = 6.50 \times 10^{-3} \text{ at } 298 \text{ K}$

What is K for $2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \rightleftharpoons \operatorname{NOBr}(g)$

Manipulating Equilibrium Constants

• Add two reactions, K is the product of the K's of those reactions

(1)
$$\operatorname{Cu}^{2+}(\operatorname{aq}) + 4 \operatorname{NH}_{3}(\operatorname{aq}) \rightleftharpoons \operatorname{Cu}(\operatorname{NH}_{3})_{4}^{2+}(\operatorname{aq})$$

(2) $\operatorname{Cu}(\operatorname{OH})_{2}(\operatorname{s}) \rightleftharpoons \operatorname{Cu}^{2+}(\operatorname{aq}) + 2 \operatorname{OH}^{-}(\operatorname{aq})$
*K*₁ = $\frac{[\operatorname{Cu}(\operatorname{NH}_{3})_{4}^{2+}]}{[\operatorname{Cu}^{2+}][\operatorname{NH}_{3}]^{4}} = 6.8 \times 10^{12}$
*K*₂ = $[\operatorname{Cu}^{2+}][\operatorname{OH}^{-}]^{2} = 1.6 \times 10^{-19}$
Net reaction:

$$Cu(OH)_{2}(s) + 4 \text{ NH}_{3}(aq) \rightleftharpoons Cu(NH_{3})_{4}^{2+}(aq) + 2 \text{ OH}^{-}(aq) \quad K_{\text{net}} = \frac{[Cu(NH_{3})_{4}^{2+}][OH^{-}]^{2}}{[NH_{3}]^{4}}$$