Sections 16.3 Using Equilibrium Constants in Calculations

Equilibrium and the Equilibrium Constant

In this section...

- a. Determining an equilibrium constant
- b. Determining if a system is at equilibrium
- c. Calculating (predicting) equilibrium concentrations

Determining an Equilibrium Constant from Experimental Information

General Idea:

- 1. Write equilibrium constant expression.
- 2. Measure one or more concentrations of a system at equilibrium.
- 3. Use stoichiometry if needed to calculate concentrations of all species at equilibrium.
- 4. Insert equilibrium values into equilibrium constant expression and calculate K.

Determining an Equilibrium Constant: Simple Example

Sulfur trioxide decomposes to sulfur dioxide and oxygen,

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

If an equilibrium mixture has the following concentrations, what is the value of K?

$$[SO_3] = 0.152 \text{ M}$$

 $[SO_2] = 0.0247 \text{ M}$
 $[O_2] = 0.0330 \text{ M}$

Introduction to ICE Tables: Determining K with less data.

An ICE table tabulates Initial concentrations, Change in concentrations, and Equilibrium concentrations

Nitrogen and hydrogen form ammonia. Initial concentrations of the reactants are $[N_2] = 0.1000 \,\text{M}$ and $[H_2] = 0.2200 \,\text{M}$. After the system reaches equilibrium, the nitrogen concentration has decreased to 0.0271 M.

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

Initial (M)

Change (M)

Equilibrium (M)

Nitrogen and hydrogen form ammonia. Initial concentrations of the reactants are $[N_2] = 0.1000 \,\text{M}$ and $[H_2] = 0.2200 \,\text{M}$. After the system reaches equilibrium, the nitrogen concentration has decreased to 0.0271 M.

	$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$			
Initial (M)	0.1000	0.2200	0	
Change (M)	-X	-3x	+2x	
Equilibrium (M)	0.1000-x	0.2200-3x	2x	

Use x to determine equilibrium concentrations.

Determine the value of x.

Use equilibrium concentrations to calculate K:

$$K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} = \frac{(0.146)^2}{(0.0271)(0.0013)^3} = 3.6 \times 10^8$$

Determining if a System is at Equilibrium: Q, the Reaction Quotient

The reaction quotient, Q, has the same form as the equilibrium constant expression, but uses actual concentrations, whether they are at equilibrium or not.

How Q is used:

- 1. Write equilibrium constant expression.
- 2. Insert concentrations and calculate Q.
 - i. If Q = K, the system is at equilibrium.
 - ii. If Q > K, there are too many products and the system will "shift left" to form more reactants.
 - iii. If Q < K, there are not enough products and the system will "shift right," forming more products.

Determining if a System is at Equilibrium: Example using Q

The following system has K = 22.3 at a particular temperature.

$$Cl_2(g) + F_2(g) \rightleftharpoons 2 ClF(g)$$

If the concentrations are as given below, is the system at equilibrium? If not, in which direction will the system react to reach equilibrium?

$$[Cl_2] = 0.300 M$$

$$[F_2] = 0.620 M$$

$$[CIF] = 0.120 M$$

Predicting Equilibrium Concentrations for a System Moving to Equilibrium

In which direction will it react to attain equilibrium? What will the concentrations be once equilibrium is reached?

How this is done:

- 1. Write equilibrium constant expression.
- 2. Insert concentrations and calculate Q.
 - i. If Q = K, the system is at equilibrium.
 - ii. If Q > K, there are too many products and the system will "shift left" to form more reactants.
 - iii. If Q < K, there are not enough products and the system will "shift right," forming more products.
- 3. Set up an ICE table and determine equilibrium concentrations in terms of initial concentrations and x.
- 4. Insert these into the equilibrium constant expression and solve to get the numerical value of x.
- 5. Use x and initial concentrations to determine equilibrium concentrations.

Predicting Equilibrium Concentrations: Example

Consider the following system, where butane isomerizes to form isobutene.

$$H_3C$$
— CH_2 — CH_3 —

A flask initially contains 0.200 M butane. What will the concentrations of butane and isobutene be when equilibrium is reached?

- 1. Reaction will shift to the right, forming isobutene.
- 2. Set up an ICE table:

Predicting Equilibrium Concentrations: Example

Consider the following system, where butane isomerizes to form isobutene.

$$H_3C$$
— CH_2 — CH_3 —

	[butane]	<>	[isobutene]
Initial (M)	0.200		0
Change (M)	-X		+χ
Equilibrium (M)	0.200 - x		X

Solve for x:

Determine equilibrium concentrations:

Insert concentration equations into equilibrium expression:

$$K = \frac{[butane]}{[isobutane]} = \frac{x}{0.200 - x}$$

Do a final check of the answers: