Section 16.4

Disturbing a Chemical Equilibrium Le Chatelier's Principle

Equilibrium and the Equilibrium Constant

In this section...

- a. Le Chatelier's Principle
- b. Adding or removing a reactant or product
- c. Changing the volume of the system
- d. Changing the temperature

Le Chatelier's Principle

General Idea:

If a chemical system at equilibrium is disturbed so that it is no longer at equilibrium, the system will respond by reacting in either the forward or reverse direction so as to counteract the disturbance, resulting in a new equilibrium composition.

Le Chatelier's Principle: Water Tank Analogy

Addition or Removal of a Reactant or Product: Concept

NOTE: K does not change when volume changes.

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$$

$$K = \frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]}$$

Addition or Removal of a Reactant or Product: Graphical

Addition or Removal of a Reactant or Product: Example

Some FeSCN²⁺ is allowed to dissociate into Fe³⁺ and SCN⁻ at 25 °C. At equilibrium,

$$[FeSCN^{2+}] = 0.0768 M$$

 $[Fe^{3+}] = [SCN^{-}] = 0.0232 M.$

Additional Fe^{3+} is added so that $[Fe^{3+}]_{new} = 0.0300$ M and the system is allowed to once again reach equilibrium. What happens?

$$Fe^{3+}(aq) + SCN^{-}(aq) \implies FeSCN^{2+}(aq) \qquad K = 142 \text{ at } 25 \text{ }^{\circ}C$$

a. In which direction will the system shift to re-attain equilibrium?

Addition or Removal of a Reactant or Product: Example

Initial concentrations: $[FeSCN^{2+}] = 0.0768 \text{ M}, [Fe^{3+}] = [SCN^{-}] = 0.0232 \text{ M}.$ Additional Fe^{3+} is added so that $[Fe^{3+}]_{new} = 0.0300 \text{ M}$

b. What will the concentrations be when equilibrium is reestablished?

Fe³⁺(aq) + SCN⁻(aq)
$$\rightleftharpoons$$
 FeSCN²⁺(aq) $K = 142$ at 25 °C

<u>Pathway</u>:

- 1. Write equilibrium expression
- 2. Construct ICE table
- 3. Express equilibrium concentrations in terms of initial concentrations and "x" (the amount reacting)
- 4. Insert into equilibrium expression and solve for the numerical value of x
- 5. Use x and initial concentrations to determine equilibrium concentrations

Initial concentrations: $[FeSCN^{2+}] = 0.0768 \text{ M}, [Fe^{3+}] = [SCN^{-}] = 0.0232 \text{ M}.$ Additional Fe^{3+} is added so that $[Fe^{3+}]_{new} = 0.0300 \text{ M}$

b. What will the concentrations be when equilibrium is reestablished?

Fe
$$^{3+}$$
(aq) + SCN $^-$ (aq) \rightleftharpoons FeSCN $^{2+}$ (aq) $=$ K = 142 at 25 $^{\circ}$ C initial 0.0300 0.0232 0.0768 change equilibrium

$$K = \frac{[\text{FeSCN}^{2+}]}{[\text{Fe}^{3+}][\text{SCN}^{-}]} = \frac{0.0768 + x}{(0.0300 - x)(0.0232 - x)} = 142$$

$$[\text{Fe}^{3+}] = 0.0300 - x = 0.0273 \text{ M}$$

$$[\text{SCN}^{-}] = 0.0232 - x = 0.0205 \text{ M}$$

$$x = 0.00267 \text{ or } 0.0575$$

$$[\text{FeSCN}^{2+}] = 0.0768 + x = 0.0795 \text{ M}$$

Changing the Volume: Concept

[N₂O₂] increases when volume is reduced because it has fewer moles.

Table 15.4.2 Effect of Volume Change on an Equilibrium System

Change	System Response	Effect on K
Decrease volume	Shifts to form fewer moles of gas	No change
Increase volume	Shifts to form more moles of gas	No change

NOTE: K does not change when volume changes.

Changing the Volume: Example

NO₂ and N₂O₄ are in equilibrium with in a 2-L container with concentrations:

$$[NO_2] = 0.314$$

 $[N_2O_4] = 0.413$

What will the concentrations be if the sample is transferred to a 1-L flask and equilibrium is reestablished?

System shifts:

$$K = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{(0.628 - 2x)^2}{0.286 + x} = 0.690$$

$$0 = 4x^2 - 3.20x + 0.197$$

$$x = 0.0672 \text{ and } 0.733$$

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

$$K = 0.690$$
 at 50 °C

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Initial (M) 0.286 0.628

Change (M)

Equilibrium (M)

$$[NO_2] = 0.628 - 2x = 0.494 \text{ M}$$

$$[N_2O_4] = 0.286 + x = 0.353 \text{ M}$$

$$K = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{(0.494)^2}{0.353} = 0.691$$

Changing the Temperature: Concept

Exothermic reaction: reactants \rightleftharpoons products + heat

Endothermic reaction: reactants + $heat \rightleftharpoons products$

When Temperature Increases:

Exothermic reaction shifts to the left:

reactants \leftarrow products + heat

Endothermic reaction shifts to the right:

reactants + $heat \rightarrow products$

When Temperature Decreases:

Exothermic reaction shifts to the right:

reactants \rightarrow products + heat

Endothermic reaction shifts to the left:

reactants + $heat \leftarrow products$

Change	Reaction Type	System Response	Effect on K
Increase temperature	Exothermic	Shifts to the left (\leftarrow)	Decreases
Increase temperature	Endothermic	Shifts to the right (\rightarrow)	Increases
Decrease temperature	Exothermic	Shifts to the right (\rightarrow)	Increases
Decrease temperature	Endothermic	Shifts to the left (\leftarrow)	Decreases

Changing the Temperature: Qualitative Example

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$
 $K = 170 \text{ at } 298\text{K}$ $\Delta H^\circ = -57.1 \text{ kJ/mol}$

$$K = 170 \text{ at } 298 \text{K}$$

$$\Delta H^{\circ} = -57.1 \text{ kJ/mol}$$

What will happen if Temperature Increases?

Changing the Temperature: Calculating how K Changes with Temperature

van't Hoff Equation (not related to van't Hoff factor):
$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Sulfur dioxide reacts with oxygen to form sulfur trioxide. The equilibrium constant, K_p , for this reaction is 0.365 at 1150 K.

$$2 \text{ SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$$
 $\Delta \text{H}^\circ = -198 \text{ kJ/mol}$

- a. What will happen to O_2 concentration when the temperature of an equilibrium system is increased?
- b. Estimate the value of the equilibrium constant at 1260 K.

$$\ln\left(\frac{K_2}{0.365}\right) = -\frac{-198 \text{ kJ/mol}}{8.3145 \times 10^{-3} \text{ kJ/K} \cdot \text{mol}} \left(\frac{1}{1260 \text{ K}} - \frac{1}{1150 \text{ K}}\right)$$
$$K_2 = 0.0599$$