Sections 17.1-2 Acids and Bases and pH Bill Vining SUNY Oneonta # Equilibrium systems Acid base Precipitation Complexation Simultaneous Equilibria ### Acid-Base Equilibria #### pH and pOH - Relationship of Conjugate Pair acid-base strength. - When acids or bases control pH: - determine K - predict pH - When pH controls acid/base state: - predict acid/base state - use acid/base state to determine pH - Buffer action - pH titration curves #### **Bronsted Acids and Bases** Bronsted Acid: H⁺ (proton) donor Bronsted Base: H⁺ acceptor Acid-Base reactions: H+ transfer reaction Conjugate Acid-Base Pairs: acid conjugate base HF F⁻ NH₄⁺ NH₃ # What is the conjugate base of HNO₂? - 1. H₂NO₂⁺ - 2. HNO₃ - 3. NO_2^{-1} # What is the conjugate acid of HPO_4^{2-} ? - 1. H₂PO₄ - 2. H₃PO₄ - 3. PO₄³⁻ ### What is the conjugate base of HPO_4^{2-} ? - 1. H₂PO₄ - 2. H₃PO₄ - 3. PO_4^{3-} # What is the conjugate acid of HPO_4^{2-} ? - 1. H₂PO₄ - 2. H₃PO₄ - 3. PO_4^{3-} | Acid | $K_{\mathbf{a}}$ | pK_a | Base | K_{b} | pK_b | |---|----------------------|----------------|--|-----------------------|--------| | Perchloric acid
HClO ₄ | large | large negative | Perchlorate ion
ClO ₄ ⁻ | very small | large | | Sulfuric acid H_2SO_4 | large | large negative | Hydrogen sulfate ion
HSO ₄ ⁻ | very small | large | | Hydrochloric acid
HCl | large | large negative | Chloride ion
Cl ⁻ | very small | large | | Nitric acid
HNO ₃ | large | large negative | Nitrate ion
NO ₃ ⁻ | very small | large | | Hydronium ion
H ₃ O ⁺ | 1.0 | 0 | Water H_2O | 1.0×10^{-14} | 14.00 | | Sulfurous acid H_2SO_8 | 1.7×10^{-2} | 1.77 | Hydrogen sulfite ion
HSO ₃ ⁻ | 5.9×10^{-13} | 12.23 | | Hydrogen sulfate ion
HSO ₄ - | 1.2×10^{-2} | 1.92 | Sulfate ion
SO ₄ ²⁻ | 8.3×10^{-13} | | | Phosphoric acid
H ₃ PO ₄ | 7.5×10^{-3} | 2.12 | Dihydrogen phosphate ion
H ₂ PO ₄ ²⁻ | 1.3×10^{-12} | 11.89 | | Hexaaquairon(III) ion $[Fe(H_2O)_6]^{8+}$ | 4.0×10^{-3} | 2.40 | Pentaaquahydroxoiron(III) ion $[Fe(H_2O)_5OH]^{2+}$ | 2.5×10^{-12} | 11.60 | | Hydrofluoric acid
HF | 7.2×10^{-4} | 3.14 | Fluoride ion
F- | 1.4×10^{-11} | 10.85 | | Nitrous acid
HNO ₂ | 4.5×10^{-4} | 3.35 | Nitrite ion
NO ₂ - | 2.2×10^{-11} | 10.66 | | Formic acid
HCO ₂ H | 1.8×10^{-4} | 3.74 | Formate ion
HCO ₂ - | 5.6×10^{-11} | 10.25 | | Benzoic acid $C_6H_5CO_2H$ | 6.3×10^{-8} | 4.20 | Benzoate ion $C_6H_5CO_2^-$ | 1.6×10^{-10} | 9.80 | | Acetic acid
CH ₃ CO ₂ H | 1.8×10^{-5} | 4.74 | Acetate ion
CH ₃ CO ₂ ⁻ | 5.6×10^{-10} | 9.25 | | Carbonic acid H_2CO_3 | 4.2×10^{-7} | 6.38 | Hydrogen carbonate ion (bicarbonate ion) $\mathrm{HCO_3}^-$ | 2.4×10^{-8} | 7.62 | | Hydrogen sulfide (hydrosulfuric acid) ${ m H_2S}$ | 1.0×10^{-7} | 7.00 | Hydrogen sulfide ion
HS- | 1.0×10^{-7} | 7.00 | | Dihydrogen phosphate ion ${ m H_2PO_4}^-$ | 6.2×10^{-8} | 7.21 | Hydrogen phosphate ion
HPO ₄ ²⁻ | 1.6×10^{-7} | 6.80 | | Hydrogen sulfite ion
HSO ₈ ⁻ | 6.4×10^{-8} | 7.19 | Sulfite ion
SO ₈ ²⁻ | 1.6×10^{-7} | 6.80 | #### Lewis Acids and Bases Lewis Acid: Electron-Pair Acceptor Lewis Base: Electron-Pair Donor Lewis Acid-Base Reaction: Base uses a lone pair to form a new bond to the acid Lewis Bases are things with Lone Pairs: #### Transition Metal Cations are Lewis Acids: $$Cu^{2+}(aq) + 4:NH_3(aq) \iff \begin{bmatrix} NH_3 \\ \downarrow \\ H_3N : \longrightarrow Cu \longleftarrow : NH_3 \\ \uparrow \\ NH_3 \end{bmatrix} (aq)$$ #### Organic Molecules with carbonyl groups are Lewis Acids: Also: CO2 is acidic ``` pH and pOH pH = -log[H_3O^+] pOH = -log[OH^{-}] [H_3O^+] = 10^{-pH} [OH^{-}] = 10^{-pH} pН [H_3O^+] [OH^{-}] 10-14 0 10^{-13} 0.1 10^{-12} 0.01 10^{-11} 0.001 10^{-4} 10^{-10} 10^{-7} 10^{-7} 10^{-10} 10^{-4} 10 10^{-11} 11 0.001 10^{-12} 12 0.01 10^{-13} 13 0.1 pH + pOH = ``` ### pH/pOH Relationships and Calculations $$2 ext{ H}_2 ext{O} \Longleftrightarrow ext{H}_3 ext{O}^+ + ext{OH}^ K_a = 1.0 \times 10^{-14} = [ext{H}_3 ext{O}^+][ext{OH}^-]$$ $[ext{H}_3 ext{O}^+][ext{OH}^-] = 1.0 \times 10^{-14}$ $pH = -log[ext{H}_3 ext{O}^+]$ $pOH = -log[ext{OH}^-]$ $[ext{H}_3 ext{O}^+] = 10^{-pH}$ $[ext{OH}^-] = 10^{-pH}$ $$pH + pOH = 14.00$$ #### Neutral, Acidic and Basic Solutions $$2 H2O \longleftrightarrow H3O+ + OH-$$ $$K_a = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$$ Neutral Acidic Basic pH $$pOH = 14.00 - pH$$ pH = $14.00 - pOH$ pH = $14.00 - pOH$ $$pH = -log[H3O+] = 10-pH$$ pOH = $-log[OH-]$ [OH-] = $10-pOH$ $$[H3O+] = \frac{[OH-] = K_W/[H3O+]}{[OH-]}$$ [OH-] What is $[H_3O^+]$ when $[OH^-] = 5.4 \times 10^{-3} M$? What is the pH of a solution with $[H_3O^+] = 4.6 \times 10^{-5} M$? What is $[H_3O^+]$ in a solution with pH = 8.24? What is the pOH of a solution with $[OH^{-}] = 3.3 \times 10^{-4} M$? What is the pH of a solution with $[OH^{-}] = 2.4 \times 10^{-3} M$? # Strong acids and bases For strong acid solutions, $[H_3O^+] = [acid]$ (except for H_2SO_4) For strong bases LiOH, NaOH, KOH, RbOH, [OH-] = [base] For strong bases $Ca(OH)_2$, $Ba(OH)_2$, etc., $[OH^-] = 2 \times [base]$ What is the pH of a 0.150 M solution of HCl? What is the pH of a 0.150 M solution of $Ca(OH)_2$?