Sections 17.1-2 Acids and Bases and pH

Bill Vining SUNY Oneonta

Equilibrium systems

Acid base

Precipitation

Complexation

Simultaneous Equilibria

Acid-Base Equilibria

pH and pOH

- Relationship of Conjugate Pair acid-base strength.
- When acids or bases control pH:
 - determine K
 - predict pH
- When pH controls acid/base state:
 - predict acid/base state
 - use acid/base state to determine pH
- Buffer action
- pH titration curves

Bronsted Acids and Bases

Bronsted Acid: H⁺ (proton) donor

Bronsted Base: H⁺ acceptor

Acid-Base reactions: H+ transfer reaction

Conjugate Acid-Base Pairs:

acid conjugate base

HF F⁻

NH₄⁺
NH₃

What is the conjugate base of HNO₂?

- 1. H₂NO₂⁺
- 2. HNO₃
- 3. NO_2^{-1}

What is the conjugate acid of HPO_4^{2-} ?

- 1. H₂PO₄
- 2. H₃PO₄
- 3. PO₄³⁻

What is the conjugate base of HPO_4^{2-} ?

- 1. H₂PO₄
- 2. H₃PO₄
- 3. PO_4^{3-}

What is the conjugate acid of HPO_4^{2-} ?

- 1. H₂PO₄
- 2. H₃PO₄
- 3. PO_4^{3-}

Acid	$K_{\mathbf{a}}$	pK_a	Base	K_{b}	pK_b
Perchloric acid HClO ₄	large	large negative	Perchlorate ion ClO ₄ ⁻	very small	large
Sulfuric acid H_2SO_4	large	large negative	Hydrogen sulfate ion HSO ₄ ⁻	very small	large
Hydrochloric acid HCl	large	large negative	Chloride ion Cl ⁻	very small	large
Nitric acid HNO ₃	large	large negative	Nitrate ion NO ₃ ⁻	very small	large
Hydronium ion H ₃ O ⁺	1.0	0	Water H_2O	1.0×10^{-14}	14.00
Sulfurous acid H_2SO_8	1.7×10^{-2}	1.77	Hydrogen sulfite ion HSO ₃ ⁻	5.9×10^{-13}	12.23
Hydrogen sulfate ion HSO ₄ -	1.2×10^{-2}	1.92	Sulfate ion SO ₄ ²⁻	8.3×10^{-13}	
Phosphoric acid H ₃ PO ₄	7.5×10^{-3}	2.12	Dihydrogen phosphate ion H ₂ PO ₄ ²⁻	1.3×10^{-12}	11.89
Hexaaquairon(III) ion $[Fe(H_2O)_6]^{8+}$	4.0×10^{-3}	2.40	Pentaaquahydroxoiron(III) ion $[Fe(H_2O)_5OH]^{2+}$	2.5×10^{-12}	11.60
Hydrofluoric acid HF	7.2×10^{-4}	3.14	Fluoride ion F-	1.4×10^{-11}	10.85
Nitrous acid HNO ₂	4.5×10^{-4}	3.35	Nitrite ion NO ₂ -	2.2×10^{-11}	10.66
Formic acid HCO ₂ H	1.8×10^{-4}	3.74	Formate ion HCO ₂ -	5.6×10^{-11}	10.25
Benzoic acid $C_6H_5CO_2H$	6.3×10^{-8}	4.20	Benzoate ion $C_6H_5CO_2^-$	1.6×10^{-10}	9.80
Acetic acid CH ₃ CO ₂ H	1.8×10^{-5}	4.74	Acetate ion CH ₃ CO ₂ ⁻	5.6×10^{-10}	9.25
Carbonic acid H_2CO_3	4.2×10^{-7}	6.38	Hydrogen carbonate ion (bicarbonate ion) $\mathrm{HCO_3}^-$	2.4×10^{-8}	7.62
Hydrogen sulfide (hydrosulfuric acid) ${ m H_2S}$	1.0×10^{-7}	7.00	Hydrogen sulfide ion HS-	1.0×10^{-7}	7.00
Dihydrogen phosphate ion ${ m H_2PO_4}^-$	6.2×10^{-8}	7.21	Hydrogen phosphate ion HPO ₄ ²⁻	1.6×10^{-7}	6.80
Hydrogen sulfite ion HSO ₈ ⁻	6.4×10^{-8}	7.19	Sulfite ion SO ₈ ²⁻	1.6×10^{-7}	6.80

Lewis Acids and Bases

Lewis Acid: Electron-Pair Acceptor Lewis Base: Electron-Pair Donor

Lewis Acid-Base Reaction: Base uses a lone pair to form a new bond to the acid

Lewis Bases are things with Lone Pairs:

Transition Metal Cations are Lewis Acids:

$$Cu^{2+}(aq) + 4:NH_3(aq) \iff \begin{bmatrix} NH_3 \\ \downarrow \\ H_3N : \longrightarrow Cu \longleftarrow : NH_3 \\ \uparrow \\ NH_3 \end{bmatrix} (aq)$$

Organic Molecules with carbonyl groups are Lewis Acids:

Also: CO2 is acidic

```
pH and pOH
pH = -log[H_3O^+]
                            pOH = -log[OH^{-}]
[H_3O^+] = 10^{-pH}
                            [OH^{-}] = 10^{-pH}
pН
          [H_3O^+]
                            [OH^{-}]
                            10-14
0
                            10^{-13}
         0.1
                            10^{-12}
         0.01
                            10^{-11}
         0.001
         10^{-4}
                            10^{-10}
         10^{-7}
                            10^{-7}
         10^{-10}
                            10^{-4}
10
          10^{-11}
11
                            0.001
         10^{-12}
12
                            0.01
         10^{-13}
13
                            0.1
pH + pOH =
```

pH/pOH Relationships and Calculations

$$2 ext{ H}_2 ext{O} \Longleftrightarrow ext{H}_3 ext{O}^+ + ext{OH}^ K_a = 1.0 \times 10^{-14} = [ext{H}_3 ext{O}^+][ext{OH}^-]$$
 $[ext{H}_3 ext{O}^+][ext{OH}^-] = 1.0 \times 10^{-14}$
 $pH = -log[ext{H}_3 ext{O}^+]$
 $pOH = -log[ext{OH}^-]$
 $[ext{H}_3 ext{O}^+] = 10^{-pH}$
 $[ext{OH}^-] = 10^{-pH}$

$$pH + pOH = 14.00$$

Neutral, Acidic and Basic Solutions

$$2 H2O \longleftrightarrow H3O+ + OH-$$

$$K_a = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$$

Neutral Acidic Basic

pH
$$pOH = 14.00 - pH$$

pH = $14.00 - pOH$

pH = $14.00 - pOH$

$$pH = -log[H3O+] = 10-pH$$

pOH = $-log[OH-]$

[OH-] = $10-pOH$

$$[H3O+] = \frac{[OH-] = K_W/[H3O+]}{[OH-]}$$

[OH-]

What is $[H_3O^+]$ when $[OH^-] = 5.4 \times 10^{-3} M$?

What is the pH of a solution with $[H_3O^+] = 4.6 \times 10^{-5} M$?

What is $[H_3O^+]$ in a solution with pH = 8.24?

What is the pOH of a solution with $[OH^{-}] = 3.3 \times 10^{-4} M$?

What is the pH of a solution with $[OH^{-}] = 2.4 \times 10^{-3} M$?

Strong acids and bases

For strong acid solutions, $[H_3O^+] = [acid]$ (except for H_2SO_4)

For strong bases LiOH, NaOH, KOH, RbOH, [OH-] = [base]

For strong bases $Ca(OH)_2$, $Ba(OH)_2$, etc., $[OH^-] = 2 \times [base]$

What is the pH of a 0.150 M solution of HCl?

What is the pH of a 0.150 M solution of $Ca(OH)_2$?