Sections 17.3 – 17.6 Acid-Base Equilibria

Bill Vining SUNY Oneonta

Acid-Base Equilibria

In these sections...

- a. Relative acid-base strength
- b. Determining Ka and Kb experimentally
- c. Estimating pH of solutions
- d. Acid-Base Properties of Salts
- e. Molecular control of acid-base strength

Acid-Base Equilibria

Bronsted Acid: H⁺ (proton) donor

Bronsted Base: H⁺ acceptor

Acid-Base reactions: H⁺ transfer reaction

Conjugate Acid-Base Pairs:

acid conjugate base

HF F
NH₄+

NH₃

Strong vs. Weak Acids

Figure 16.3.1: Molecular view of (a) strong and (b) weak acids

Weak Acid-Base Strength Varies Greatly Depending on the Equilibrium Constant

Acid Equilibria in Water

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Base Equilibria in Water

$$B + H_2O \longrightarrow OH^- + HB^+$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

K _a and K _b Values					
Name of Acid	Acid	Ka	Name of Base	Base	K _b
Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO ₄ -	very small
Hydrochloric acid	HC1	large	chloride ion	C1-	very small
Nitric acid	HNO ₃	large	nitrate ion	NO ₃ -	very small
Hydronium ion	H ₃ O+	1.0	water	H ₂ O	1.0×10^{-14}
Hydrogen sulfate ion	HSO ₄ -	1.2×10^{-2}	sulfate ion	SO ₄ 2-	8.3×10^{-13}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	dihydrogen phosphate ion	H ₂ PO ₄ ⁻	1.3×10^{-12}
Hexaaquairon(III) ion	Fe(H ₂ O) ₆ 3+	6.3×10^{-3}	pentaaquahydroxoiron(III) ion	Fe(H ₂ O) ₅ OH ²⁺	1.6×10^{-12}
Hydrofluoric acid	HF	7.4×10^{-4}	fluoride ion	F	1.4×10^{-11}
Formic acid	HCO ₂ H	1.8×10^{-4}	formate ion	HCO ₂ -	5.6×10^{-11}
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3×10^{-5}	benzoate ion	C6H5CO2T	1.6×10^{-10}
Acetic acid	CH ₃ CO ₂ H	1.8×10^{-5}	acetate ion	CH ₃ CO ₂ -	5.6×10^{-10}
Hexaaquaaluminum ion	A1(H ₂ O) ₆ 3+	7.9×10^{-6}	pentaaquahydroxoaluminum ion	A1(H ₂ O) ₅ OH ²⁺	1.3×10^{-9}
Carbonic acid	H ₂ CO ₃	4.2×10^{-7}	hydrogen carbonate ion	HCO3-	2.4×10^{-8}
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS-	1×10^{-7}
Dihydrogen phosphate ion	H ₂ PO ₄ -	6.2×10^{-8}	hydrogen phosphate ion	HPO ₄ 2-	1.6×10^{-7}
Hypochlorous acid	HC1O	3.5×10^{-8}	hypochlorite ion	010-	2.9×10^{-7}
Ammonium ion	NH ₄ +	5.6×10^{-10}	ammonia	NH ₃	1.8×10^{-5}
Hydrocyanic acid	HCN	4.0×10^{-10}	cyanide ion	CN-	2.5×10^{-5}
Hexaaquairon(II) ion	Fe(H ₂ O) ₆ ²⁺	3.2×10^{-10}	pentaaquahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH ⁺	3.1×10^{-5}
Hydrogen carbonate ion	HCO ₃ -	4.8×10^{-11}	carbonate ion	CO32-	2.1×10^{-4}
Hydrogen phosphate ion	HPO ₄ 2-	3.6×10^{-13}	phosphate ion	PO43-	2.8×10^{-2}
Water	H ₂ O	1.0×10^{-14}	hydroxide ion	OH-	1.0
Hydrogen sulfide ion	HS-	1×10^{-19}	sulfide ion	S2-	1 × 10 ⁵

Strong Acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄

Strong Bases: NaOH, KOH, Ca(OH)2, Ba(OH)2

Trends in relative acid/base strength for conjugate pairs.

K _a and K _b Values					
Name of Acid	Acid	Ka	Name of Base	Base	К _b
Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO ₄ -	very small
Hydrochloric acid	HC1	large	chloride ion	C1-	very small
Nitric acid	HNO ₃	large	nitrate ion	NO ₃ -	very small
Hydronium ion	H ₃ O+	1.0	water	H ₂ O	1.0×10^{-14}
Hydrogen sulfate ion	HSO ₄ -	1.2×10^{-2}	sulfate ion	SO ₄ 2-	8.3×10^{-13}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	dihydrogen phosphate ion	H ₂ PO ₄ -	1.3×10^{-12}
Hexaaquairon(III) ion	Fe(H ₂ O) ₆ 3+	6.3×10^{-3}	pentaaquahydroxoiron(III) ion	Fe(H ₂ O) ₅ OH ²⁺	1.6×10^{-12}
Hydrofluoric acid	HF	7.4×10^{-4}	fluoride ion	F	1.4×10^{-11}
Formic acid	HCO ₂ H	1.8×10^{-4}	formate ion	HCO ₂ -	5.6×10^{-11}
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3×10^{-5}	benzoate ion	C ₆ H ₅ CO ₂ ⁻	1.6×10^{-10}
Acetic acid	CH ₃ CO ₂ H	1.8×10^{-5}	acetate ion	CH ₃ CO ₂ -	5.6×10^{-10}
Hexaaquaaluminum ion	A1(H ₂ O) ₆ 3+	7.9×10^{-6}	pentaaquahydroxoaluminum ion	A1(H ₂ O) ₅ OH ²⁺	1.3×10^{-9}
Carbonic acid	H ₂ CO ₃	4.2×10^{-7}	hydrogen carbonate ion	HCO ₃ -	2.4 × 10 ⁻⁸
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS ⁻	1×10^{-7}
Dihydrogen phosphate ion	H ₂ PO ₄ -	6.2×10^{-8}	hydrogen phosphate ion	HPO ₄ 2-	1.6×10^{-7}
Hypochlorous acid	HC1O	3.5×10^{-8}	hypochlorite ion	010-	2.9×10^{-7}
Ammonium ion	NH ₄ +	5.6×10^{-10}	ammonia	NH ₃	1.8×10^{-5}
Hydrocyanic acid	HCN	4.0×10^{-10}	cyanide ion	CN-	2.5×10^{-5}
Hexaaquairon(II) ion	Fe(H ₂ O) ₆ ²⁺	3.2×10^{-10}	pentaaquahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH ⁺	3.1×10^{-5}
Hydrogen carbonate ion	HCO ₃ -	4.8×10^{-11}	carbonate ion	CO ₃ 2-	2.1×10^{-4}
Hydrogen phosphate ion	HPO ₄ 2-	3.6×10^{-13}	phosphate ion	PO43-	2.8 x 10 ⁻²
Water	H ₂ O	1.0×10^{-14}	hydroxide ion	OH-	1.0
Hydrogen sulfide ion	HS-	1 × 10 ⁻¹⁹	sulfide ion	S2-	1 × 10 ⁵

Strong Acids: <u>HCl</u>, <u>HBr</u>, HI, HNO₃, H₂SO₄, HClO₄ Strong Bases: <u>NaOH</u>, KOH, Ca(OH)₂, <u>Ba(OH)</u>₂

Relationship Between K_a and K_b for an Acid-Base Conjugate Pair $K_a \times K_b = 1.0 \times 10^{-14}$

Ammonia is a base with $K_b = 1.8 \times 10^{-5}$. What is the conjugate acid, and what is its K_a value?

Determining the K_a Value Experimentally

Measure pH for a solution of known concentration. pH \rightarrow [H₃O⁺] \rightarrow x in an ICE table \rightarrow all []'s \rightarrow K_a

What is the value of K_a for an acid, HA, for which a 0.240 M solution has a pH of 3.28?

Determining K_b:

A 0.300 M solution of a weak base has a pH of 9.20. What is K_b ?

Estimating the pH when [HA] and K_a are known

Set up ICE Table $\rightarrow x = [H_3O^+] \rightarrow pH$

What is the pH of a 0.150 M solution of HF?

Estimate when $[HA]_o > 100 \times K_a$

What is the pH of a 0.150 M solution of HCN?

Estimating pH of weak base solutions

What is the pH of a 0.150 M solution of NH₃?

Acid-Base Properties of Salts

Look at acid-base properties of each ion.

Ions that are conjugates from strong acids or strong bases are pH neutral. Anions that are conjugates of weak acids are usually weak bases.

K _a and K _b Values					Examples:	
Name of Acid	Acid	Ka	Name of Base	Base	K _b	
Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO ₄ -	very small	NaCN
Hydrochloric acid	HC1	large	chloride ion	C1-	very small	Naciv
Nitric acid	HNO ₃	large	nitrate ion	NO ₃ T	very small	
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	dihydrogen phosphate ion	H ₂ PO ₄ -	1.3×10^{-12}	KNO-
Hydrofluoric acid	HF	7.4×10^{-4}	fluoride ion	F -	1.4×10^{-11}	KNO ₃
Formic acid	HCO ₂ H	1.8×10^{-4}	formate ion	HCO ₂ -	5.6 x 10 ⁻¹¹	
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3 × 10 ⁻⁵	benzoate ion	C ₆ H ₅ CO ₂ -	1.6×10^{-10}	NILL OI
Acetic acid	CH ₃ CO ₂ H	1.8×10^{-5}	acetate ion	CH ₃ CO ₂ -	5.6 x 10 ⁻¹⁰	NH ₄ CI
լոբarbonic acid	H ₂ CO ₃	4.2×10^{-7}	hydrogen carbonate ion	HCO ₃ -	2.4×10^{-8}	
lydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS ⁻	1×10^{-7}	
Dihydrogen phosphate ion	H ₂ PO ₄ ⁻	6.2 x 10 ⁻⁸	hydrogen phosphate ion	HPO ₄ 2-	1.6×10^{-7}	NaHCO ₂
Hypochlorous acid	HC1O	3.5×10^{-8}	hypochlorite ion	C1O-	2.9×10^{-7}	_
Ammonium ion	NH ₄ +	5.6×10^{-10}	ammonia	NH ₃	1.8×10^{-5}	2.2
Hydrocyanic acid	HCN	4.0×10^{-10}	cyanide ion	CN-	2.5×10^{-5}	Na ₂ CO ₃
Hexaaquairon(II)ion	Fe(H ₂ O) ₆ 2+	3.2×10^{-10}	pentaaquahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH+	3.1×10^{-5}	
Hydrogen carbonate ion	HCO3-	4.8×10^{-11}	carbonate ion	CO3 ²⁻	2.1×10^{-4}	
Hydrogen phosphate ion	HPO ₄ 2-	3.6 × 10 ⁻¹³	phosphate ion	PO ₄ 3-	2.8×10^{-2}	KHSO ₄
Water	H ₂ O	1.0×10^{-14}	hydroxide ion	OH-	1.0	111004
Hydrogen sulfide ion	HS ⁻	1 × 10 ⁻¹⁹	sulfide ion	S ²⁻	1 × 10 ⁵	
Strong Acide:	HCI HBr	ш ш.с	O4 HNO2 HCIO4			NH₄CN

Strong Acids: HCI, HBr, HI, H₂SO₄, HNO₃, HCIO₄ Strong Bases: NaOH, KOH, Ca(OH)₂, Ba(OH)₂

Molecular Structure and Acid Strength

1. H-A Bond Strength and Acid Strength

As bond strength increases, acid strength decreases.

Table 16.4 Bond Energies and K_a values for the H—X acids

<u>H</u> —X	Bond Energy	K _a		
H—F	569 kJ/mol	~7 × 10 ⁻⁴		
H—C1	431 kJ/mol	~10 ⁷		
H—Br	368 kJ/mol	~10 ⁹		
H—I	297 kJ/mol	$\sim 10^{10}$		

The order of acid strength for this series

HF << HCl < HBr < HI

2. H-A, Electronegativity of A and Acid Strength

As electronegativity increases, acid strength increases.

