Sections 17.3 – 17.6 Acid-Base Equilibria Bill Vining SUNY Oneonta # Acid-Base Equilibria In these sections... - a. Relative acid-base strength - b. Determining Ka and Kb experimentally - c. Estimating pH of solutions - d. Acid-Base Properties of Salts - e. Molecular control of acid-base strength # Acid-Base Equilibria Bronsted Acid: H⁺ (proton) donor Bronsted Base: H⁺ acceptor Acid-Base reactions: H⁺ transfer reaction Conjugate Acid-Base Pairs: acid conjugate base HF F NH₄+ NH₃ # Strong vs. Weak Acids Figure 16.3.1: Molecular view of (a) strong and (b) weak acids # Weak Acid-Base Strength Varies Greatly Depending on the Equilibrium Constant #### Acid Equilibria in Water $$HA + H_2O \longrightarrow H_3O^+ + A^-$$ $$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$ ### Base Equilibria in Water $$B + H_2O \longrightarrow OH^- + HB^+$$ $$K_b = \frac{[OH^-][HB^+]}{[B]}$$ | K _a and K _b Values | | | | | | |--|---|-----------------------|-------------------------------|--|-----------------------| | Name of Acid | Acid | Ka | Name of Base | Base | K _b | | Sulfuric acid | H ₂ SO ₄ | large | hydrogen sulfate ion | HSO ₄ - | very small | | Hydrochloric acid | HC1 | large | chloride ion | C1- | very small | | Nitric acid | HNO ₃ | large | nitrate ion | NO ₃ - | very small | | Hydronium ion | H ₃ O+ | 1.0 | water | H ₂ O | 1.0×10^{-14} | | Hydrogen sulfate ion | HSO ₄ - | 1.2×10^{-2} | sulfate ion | SO ₄ 2- | 8.3×10^{-13} | | Phosphoric acid | H ₃ PO ₄ | 7.5×10^{-3} | dihydrogen phosphate ion | H ₂ PO ₄ ⁻ | 1.3×10^{-12} | | Hexaaquairon(III) ion | Fe(H ₂ O) ₆ 3+ | 6.3×10^{-3} | pentaaquahydroxoiron(III) ion | Fe(H ₂ O) ₅ OH ²⁺ | 1.6×10^{-12} | | Hydrofluoric acid | HF | 7.4×10^{-4} | fluoride ion | F | 1.4×10^{-11} | | Formic acid | HCO ₂ H | 1.8×10^{-4} | formate ion | HCO ₂ - | 5.6×10^{-11} | | Benzoic acid | C ₆ H ₅ CO ₂ H | 6.3×10^{-5} | benzoate ion | C6H5CO2T | 1.6×10^{-10} | | Acetic acid | CH ₃ CO ₂ H | 1.8×10^{-5} | acetate ion | CH ₃ CO ₂ - | 5.6×10^{-10} | | Hexaaquaaluminum ion | A1(H ₂ O) ₆ 3+ | 7.9×10^{-6} | pentaaquahydroxoaluminum ion | A1(H ₂ O) ₅ OH ²⁺ | 1.3×10^{-9} | | Carbonic acid | H ₂ CO ₃ | 4.2×10^{-7} | hydrogen carbonate ion | HCO3- | 2.4×10^{-8} | | Hydrogen sulfide | H ₂ S | 1 × 10 ⁻⁷ | hydrogen sulfide ion | HS- | 1×10^{-7} | | Dihydrogen phosphate ion | H ₂ PO ₄ - | 6.2×10^{-8} | hydrogen phosphate ion | HPO ₄ 2- | 1.6×10^{-7} | | Hypochlorous acid | HC1O | 3.5×10^{-8} | hypochlorite ion | 010- | 2.9×10^{-7} | | Ammonium ion | NH ₄ + | 5.6×10^{-10} | ammonia | NH ₃ | 1.8×10^{-5} | | Hydrocyanic acid | HCN | 4.0×10^{-10} | cyanide ion | CN- | 2.5×10^{-5} | | Hexaaquairon(II) ion | Fe(H ₂ O) ₆ ²⁺ | 3.2×10^{-10} | pentaaquahydroxoiron(II) ion | Fe(H ₂ O) ₅ OH ⁺ | 3.1×10^{-5} | | Hydrogen carbonate ion | HCO ₃ - | 4.8×10^{-11} | carbonate ion | CO32- | 2.1×10^{-4} | | Hydrogen phosphate ion | HPO ₄ 2- | 3.6×10^{-13} | phosphate ion | PO43- | 2.8×10^{-2} | | Water | H ₂ O | 1.0×10^{-14} | hydroxide ion | OH- | 1.0 | | Hydrogen sulfide ion | HS- | 1×10^{-19} | sulfide ion | S2- | 1 × 10 ⁵ | Strong Acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄ Strong Bases: NaOH, KOH, Ca(OH)2, Ba(OH)2 Trends in relative acid/base strength for conjugate pairs. | K _a and K _b Values | | | | | | |--|---|-----------------------|-------------------------------|--|------------------------| | Name of Acid | Acid | Ka | Name of Base | Base | К _b | | Sulfuric acid | H ₂ SO ₄ | large | hydrogen sulfate ion | HSO ₄ - | very small | | Hydrochloric acid | HC1 | large | chloride ion | C1- | very small | | Nitric acid | HNO ₃ | large | nitrate ion | NO ₃ - | very small | | Hydronium ion | H ₃ O+ | 1.0 | water | H ₂ O | 1.0×10^{-14} | | Hydrogen sulfate ion | HSO ₄ - | 1.2×10^{-2} | sulfate ion | SO ₄ 2- | 8.3×10^{-13} | | Phosphoric acid | H ₃ PO ₄ | 7.5×10^{-3} | dihydrogen phosphate ion | H ₂ PO ₄ - | 1.3×10^{-12} | | Hexaaquairon(III) ion | Fe(H ₂ O) ₆ 3+ | 6.3×10^{-3} | pentaaquahydroxoiron(III) ion | Fe(H ₂ O) ₅ OH ²⁺ | 1.6×10^{-12} | | Hydrofluoric acid | HF | 7.4×10^{-4} | fluoride ion | F | 1.4×10^{-11} | | Formic acid | HCO ₂ H | 1.8×10^{-4} | formate ion | HCO ₂ - | 5.6×10^{-11} | | Benzoic acid | C ₆ H ₅ CO ₂ H | 6.3×10^{-5} | benzoate ion | C ₆ H ₅ CO ₂ ⁻ | 1.6×10^{-10} | | Acetic acid | CH ₃ CO ₂ H | 1.8×10^{-5} | acetate ion | CH ₃ CO ₂ - | 5.6×10^{-10} | | Hexaaquaaluminum ion | A1(H ₂ O) ₆ 3+ | 7.9×10^{-6} | pentaaquahydroxoaluminum ion | A1(H ₂ O) ₅ OH ²⁺ | 1.3×10^{-9} | | Carbonic acid | H ₂ CO ₃ | 4.2×10^{-7} | hydrogen carbonate ion | HCO ₃ - | 2.4 × 10 ⁻⁸ | | Hydrogen sulfide | H ₂ S | 1 × 10 ⁻⁷ | hydrogen sulfide ion | HS ⁻ | 1×10^{-7} | | Dihydrogen phosphate ion | H ₂ PO ₄ - | 6.2×10^{-8} | hydrogen phosphate ion | HPO ₄ 2- | 1.6×10^{-7} | | Hypochlorous acid | HC1O | 3.5×10^{-8} | hypochlorite ion | 010- | 2.9×10^{-7} | | Ammonium ion | NH ₄ + | 5.6×10^{-10} | ammonia | NH ₃ | 1.8×10^{-5} | | Hydrocyanic acid | HCN | 4.0×10^{-10} | cyanide ion | CN- | 2.5×10^{-5} | | Hexaaquairon(II) ion | Fe(H ₂ O) ₆ ²⁺ | 3.2×10^{-10} | pentaaquahydroxoiron(II) ion | Fe(H ₂ O) ₅ OH ⁺ | 3.1×10^{-5} | | Hydrogen carbonate ion | HCO ₃ - | 4.8×10^{-11} | carbonate ion | CO ₃ 2- | 2.1×10^{-4} | | Hydrogen phosphate ion | HPO ₄ 2- | 3.6×10^{-13} | phosphate ion | PO43- | 2.8 x 10 ⁻² | | Water | H ₂ O | 1.0×10^{-14} | hydroxide ion | OH- | 1.0 | | Hydrogen sulfide ion | HS- | 1 × 10 ⁻¹⁹ | sulfide ion | S2- | 1 × 10 ⁵ | Strong Acids: <u>HCl</u>, <u>HBr</u>, HI, HNO₃, H₂SO₄, HClO₄ Strong Bases: <u>NaOH</u>, KOH, Ca(OH)₂, <u>Ba(OH)</u>₂ # Relationship Between K_a and K_b for an Acid-Base Conjugate Pair $K_a \times K_b = 1.0 \times 10^{-14}$ Ammonia is a base with $K_b = 1.8 \times 10^{-5}$. What is the conjugate acid, and what is its K_a value? Determining the K_a Value Experimentally Measure pH for a solution of known concentration. pH \rightarrow [H₃O⁺] \rightarrow x in an ICE table \rightarrow all []'s \rightarrow K_a What is the value of K_a for an acid, HA, for which a 0.240 M solution has a pH of 3.28? # Determining K_b: A 0.300 M solution of a weak base has a pH of 9.20. What is K_b ? Estimating the pH when [HA] and K_a are known Set up ICE Table $\rightarrow x = [H_3O^+] \rightarrow pH$ What is the pH of a 0.150 M solution of HF? Estimate when $[HA]_o > 100 \times K_a$ What is the pH of a 0.150 M solution of HCN? Estimating pH of weak base solutions What is the pH of a 0.150 M solution of NH₃? ### Acid-Base Properties of Salts Look at acid-base properties of each ion. Ions that are conjugates from strong acids or strong bases are pH neutral. Anions that are conjugates of weak acids are usually weak bases. | K _a and K _b Values | | | | | Examples: | | |--|---|-------------------------|------------------------------|---|-------------------------|---------------------------------| | Name of Acid | Acid | Ka | Name of Base | Base | K _b | | | Sulfuric acid | H ₂ SO ₄ | large | hydrogen sulfate ion | HSO ₄ - | very small | NaCN | | Hydrochloric acid | HC1 | large | chloride ion | C1- | very small | Naciv | | Nitric acid | HNO ₃ | large | nitrate ion | NO ₃ T | very small | | | Phosphoric acid | H ₃ PO ₄ | 7.5×10^{-3} | dihydrogen phosphate ion | H ₂ PO ₄ - | 1.3×10^{-12} | KNO- | | Hydrofluoric acid | HF | 7.4×10^{-4} | fluoride ion | F - | 1.4×10^{-11} | KNO ₃ | | Formic acid | HCO ₂ H | 1.8×10^{-4} | formate ion | HCO ₂ - | 5.6 x 10 ⁻¹¹ | | | Benzoic acid | C ₆ H ₅ CO ₂ H | 6.3 × 10 ⁻⁵ | benzoate ion | C ₆ H ₅ CO ₂ - | 1.6×10^{-10} | NILL OI | | Acetic acid | CH ₃ CO ₂ H | 1.8×10^{-5} | acetate ion | CH ₃ CO ₂ - | 5.6 x 10 ⁻¹⁰ | NH ₄ CI | | լոբarbonic acid | H ₂ CO ₃ | 4.2×10^{-7} | hydrogen carbonate ion | HCO ₃ - | 2.4×10^{-8} | | | lydrogen sulfide | H ₂ S | 1 × 10 ⁻⁷ | hydrogen sulfide ion | HS ⁻ | 1×10^{-7} | | | Dihydrogen phosphate ion | H ₂ PO ₄ ⁻ | 6.2 x 10 ⁻⁸ | hydrogen phosphate ion | HPO ₄ 2- | 1.6×10^{-7} | NaHCO ₂ | | Hypochlorous acid | HC1O | 3.5×10^{-8} | hypochlorite ion | C1O- | 2.9×10^{-7} | _ | | Ammonium ion | NH ₄ + | 5.6×10^{-10} | ammonia | NH ₃ | 1.8×10^{-5} | 2.2 | | Hydrocyanic acid | HCN | 4.0×10^{-10} | cyanide ion | CN- | 2.5×10^{-5} | Na ₂ CO ₃ | | Hexaaquairon(II)ion | Fe(H ₂ O) ₆ 2+ | 3.2×10^{-10} | pentaaquahydroxoiron(II) ion | Fe(H ₂ O) ₅ OH+ | 3.1×10^{-5} | | | Hydrogen carbonate ion | HCO3- | 4.8×10^{-11} | carbonate ion | CO3 ²⁻ | 2.1×10^{-4} | | | Hydrogen phosphate ion | HPO ₄ 2- | 3.6 × 10 ⁻¹³ | phosphate ion | PO ₄ 3- | 2.8×10^{-2} | KHSO ₄ | | Water | H ₂ O | 1.0×10^{-14} | hydroxide ion | OH- | 1.0 | 111004 | | Hydrogen sulfide ion | HS ⁻ | 1 × 10 ⁻¹⁹ | sulfide ion | S ²⁻ | 1 × 10 ⁵ | | | Strong Acide: | HCI HBr | ш ш.с | O4 HNO2 HCIO4 | | | NH₄CN | Strong Acids: HCI, HBr, HI, H₂SO₄, HNO₃, HCIO₄ Strong Bases: NaOH, KOH, Ca(OH)₂, Ba(OH)₂ ### Molecular Structure and Acid Strength ### 1. H-A Bond Strength and Acid Strength As bond strength increases, acid strength decreases. Table 16.4 Bond Energies and K_a values for the H—X acids | <u>H</u> —X | Bond Energy | K _a | | | |-------------|-------------|-----------------------|--|--| | H—F | 569 kJ/mol | ~7 × 10 ⁻⁴ | | | | H—C1 | 431 kJ/mol | ~10 ⁷ | | | | H—Br | 368 kJ/mol | ~10 ⁹ | | | | H—I | 297 kJ/mol | $\sim 10^{10}$ | | | The order of acid strength for this series HF << HCl < HBr < HI ## 2. H-A, Electronegativity of A and Acid Strength As electronegativity increases, acid strength increases.