Section 20.1 Entropy and the Three Laws of **Thermodynamics**

Bill Vining SUNY College at Oneonta

Control of Chemical Reactions

Thermodynamic Control of Reactions

Enthalpy

Bond Energies

- Forming stronger bonds favors reactions.
- Molecules with strong bonds are more stable.

Entropy

Randomness

- Reactions that increase random ness are favored.
- Forming gases favors reactions.

The Laws of Thermodynamics

1st Law of Thermodynamics: Energy is Conserved

2nd Law of Thermodynamics: All physical and chemical changes occur such that

- at least some energy *disperses,*
- the total concentrated or organized energy of the universe *decreases,* and
- the total diffuse or *dis*organized energy of the universe *increases.*

Any process leads to an increase in total entropy.

In chemical systems entropy is viewed as the freedom of movement of molecules and atoms.

Entropy

A measure of dissipated energy within a system.

Symbol: S Units: J/K

2nd Law of Thermodynamics:

All physical and chemical changes occur such that the total entropy of the universe increases.

 ΔS _{universe} = ΔS _{system} + ΔS _{surroundings} > 0 = a "spontaneous" system

Standard Molar Entropy

Symbol: S Units: J/K

Trends in Entropy

 $Br_2(g) = 245.5$ J/K vs. $Br_2(\ell) = 152.2$ J/K

Temperature

As temperature increases, molecular motions increase (even without a phase change). Therefore, S increases with increasing temperature.

Trends in Entropy

Molecular Size: Larger molecules have more vibrational modes and greater freedom of movement

 $CH_4(g) = 186.3$ J/K $CH_3CH_3(g) = 229.6$ J/K $CH_3CH_2CH_3(g) = 269.9$ J/K

Forces Between Particles:

Stronger bonding in a solid results in less freedom of movement.

 $NaF = 51.2$ J/K $MgO = 26.9$ J/K

Where does standard entropy come from?

Section 20.2 Calculating Entropy Change

Bill Vining SUNY College at Oneonta

Calculating Entropy Change

For the System, in general:

$$
\Delta S^{o} = \sum S^{o}(products) - \sum S^{o}(reactants)
$$

If the system gets **more random**, ΔS is **positive**. (Favors the reaction)

If the system gets **more ordered**, ΔS is **negative**. (Disfavors the reaction)

Heat of fusion (melting) of ice is 6000 J/mol. What is the entropy change for melting ice at $0°C$?

Calculating ΔS : All other reactions

$$
\Delta S^o = \sum S^o
$$
 (*products*) - $\sum S^o$ (*reactants*)

$$
C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)
$$

\n $C_3H_8(g) = 269.9$
\n $O_2(g) = 205.1$
\n $CO_2(g) = 213.7$

 $H₂O(\ell) = 69.9$

Predicting the sign of entropy change:

What types of reactions lead to increased entropy?

Effect of moles of gas:

 $NH_4Cl(s) \longrightarrow NH_3(g) + HCl(g)$ $H_2CO(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(l)$ $H_2(g) + C_2H_4(g) \longrightarrow C_2H_6(g)$ $2CO₂(g) + N₂(g) \longrightarrow 2CO(g) + 2NO(g)$ $CH₄(g) + H₂O(g) \longrightarrow 3H₂(g) + CO(g)$

What types of reactions lead to increased entropy?

Effect of dissolution:

 $NaCl(s) \rightarrow NaCl(aq)$

 $S^{o}(NaCl(s)) = 72.1$ J/K S $O(NaCl(aq)) = 115.5$ J/K

 $NaOH(s)$ \rightarrow NaOH(aq)

 $S^o(NaOH(s)) = 64.5$ J/K S_SSSS STRIKE $O(NaOH(aq)) = 48.1$ J/K Entropy vs. Enthalpy Control of Reactions

system

endothermic system:

surroundings

Entropy vs. Enthalpy Control of Reactions

Second law of thermodynamics: system and surroundings ΔS _{universe} = ΔS _{system} + ΔS _{surroundings}

$$
\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \frac{-\Delta H_{\text{system}}}{T}
$$

Calculate the entropy change for the universe for the reaction:

```
2 NO(g) + 2 H<sub>2</sub>(g) \rightarrow N<sub>2</sub>(g) + 2 H<sub>2</sub>O(l)
```

```
\Delta H^{\circ} = -752.2 kJ and \Delta S^{\circ} = -351.6 J/K
```

$$
\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \frac{-\Delta H_{\text{system}}}{T}
$$

Calculate the entropy change for the universe for the reaction:

```
2 NO(g) + 2 H<sub>2</sub>(g) \rightarrow N<sub>2</sub>(g) + 2 H<sub>2</sub>O(l)
\Delta H^{\circ} = -752.2 kJ and \Delta S^{\circ} = -351.6 J/K
\Delta S^{\circ}<sub>universe</sub> = +2171.3 J/K
The reaction is: _______________ favored.
The reaction ________ favored by entropy.
```
The reaction ________ favored by enthalpy.

At this temperature, the reaction is controlled by ________________.

Section 20.3 Free Energy

Bill Vining SUNY College at Oneonta Putting ΔS , ΔH and Temperature Together

Gibb's Free Energy: $\Delta G = \Delta H - T \Delta S$

When ΔG is *negative*, reaction is *favored*.

When ΔG is *positive*, reaction is *disfavored*.

2 Fe₂O₃(s) + 3 C(s) \rightarrow 4 Fe(s) + 3 CO₂(g)

 $\Delta H = +468$ kJ $\Delta S = +561$ J/K $\Delta G = \Delta H - T \Delta S$

What is ΔG at 25 °C and at 1000 °C?

Enthalpy vs. Entropy Control of Reactions

 $\Delta G = \Delta H - T \Delta S$

At high temperatures:

At low temperatures:

Temperature Domains and Reaction Favorability

2 Fe₂O₃(s) + 3 C(s) \rightarrow 4 Fe(s) + 3 CO₂(g)

 $\Delta H = +468$ kJ ΔS = +561 J/K

In what temperature range will this reaction be favored?

High or low?

What temperature?

Free Energy vs. Temperature Curves

Catalytic Converters

Nitrogen oxides cause smog.

 $N_2(g) + O_2(g) \rightarrow 2 NO(g)$ $\Delta H = +180$ kJ $\Delta S = +25$ J/K

Free Energy of Formation: *Only used at 25 ^oC*

ΔG^o_f (compound) = ΔG^o for reaction to make 1 mol *from elements in their natural states*

Free Energy of Formation: *Only used at 25 ^oC*

$$
\Delta G^o = \sum \Delta G^o_f
$$
 (*products*) - $\sum \Delta G^o_f$ (*reactants*)

 $CH_3CH_2OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$

Table 19.3.2 Selected Standard Free Energies of Formation for Pure Substances at 25 °C

