Section 20.1 Entropy and the Three Laws of Thermodynamics

Bill Vining SUNY College at Oneonta

Control of Chemical Reactions

Thermodynamic Control of Reactions

Enthalpy

Bond Energies

- Forming stronger bonds favors reactions.
- Molecules with strong bonds are more stable.

Entropy

Randomness

- Reactions that increase randomness are favored.
- Forming gases favors reactions.

The Laws of Thermodynamics

1st Law of Thermodynamics: Energy is Conserved

2nd Law of Thermodynamics: All physical and chemical changes occur such that

- at least some energy *disperses*,
- the total concentrated or organized energy of the universe *decreases*, and
- the total diffuse or *dis*organized energy of the universe *increases*.

Any process leads to an increase in total entropy.

In chemical systems entropy is viewed as the freedom of movement of molecules and atoms.

Entropy

A measure of dissipated energy within a system.

Symbol: S Units: J/K

2nd Law of Thermodynamics:

All physical and chemical changes occur such that the total entropy of the universe increases.

 $\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0 = a$ "spontaneous" system

Standard Molar Entropy

Symbol: S Units: J/K

Table 19.1.2 Standard Molar Entropies for Some Common Substances at 25 °C					
Solids	S° (J/mol K)	Liquids	S° (J/mol K)	Gases	S° (J/mol K)
C(diamond)	2.4	Hg	75.9	He	126.2
C(graphite)	5.7	H_2O	69.9	Ne	146.3
Fe	27.8	CH₃OH	126.8	H_2	130.7
Al	28.3	Br_2	152.2	O_2	205.1
Cu	33.2	$\rm H_2SO_4$	156.9	H_2O	188.8
CaS	56.5	$\rm CH_3 CH_2 OH$	160.7	CO	197.7
KI	106.3	$\mathrm{C}_{6}\mathrm{H}_{6}$	172.8	$\rm CO_2$	213.7

Trends in Entropy

 $Br_2(g) = 245.5 \text{ J/K} \text{ vs. } Br_2(\ell) = 152.2 \text{ J/K}$

<u>Temperature</u>

As temperature increases, molecular motions increase (even without a phase change). Therefore, S increases with increasing temperature.

Trends in Entropy

<u>Molecular Size</u>: Larger molecules have more vibrational modes and greater freedom of movement

 $CH_4(g) = 186.3 J/K$ $CH_3CH_3(g) = 229.6 J/K$ $CH_3CH_2CH_3(g) = 269.9 J/K$

Forces Between Particles:

Stronger bonding in a solid results in less freedom of movement.

NaF = 51.2 J/K MgO = 26.9 J/K

Where does standard entropy come from?

Phase	Temperature (K)	S° (J/mol K)		
Solid	2	0.00049		
	12	0.14		
	38	3.1		
Liquid	273	64		
	300	70		
	373	87		
Gas	373	197		

Table 19.1.1 Entropy of H₂O from 2 K to 373 K

Section 20.2 Calculating Entropy Change

Bill Vining SUNY College at Oneonta

Calculating Entropy Change

For the System, in general:

$$\Delta S^{o} = \sum S^{o}(products) - \sum S^{o}(reactants)$$

If the system gets **more random**, ΔS is **positive**. (Favors the reaction)

If the system gets more ordered, ΔS is negative. (Disfavors the reaction)

Heat of fusion (melting) of ice is 6000 J/mol. What is the entropy change for melting ice at 0 $^{\circ}$ C?

Calculating ΔS : All other reactions

$$\Delta S^{\circ} = \sum S^{\circ}(products) - \sum S^{\circ}(reactants)$$

$$C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(\ell)$$

 $C_{3}H_{8}(g) = 269.9$
 $O_{2}(g) = 205.1$
 $CO_{2}(g) = 213.7$

 $\mathbf{O}_{\mathbf{O}}$

 $H_2O(l) = 69.9$

Predicting the sign of entropy change:

What types of reactions lead to increased entropy?

Effect of moles of gas:

 $\begin{aligned} \mathsf{NH}_4\mathsf{CI}(\mathsf{s}) &\longrightarrow \mathsf{NH}_3(\mathsf{g}) + \mathsf{HCI}(\mathsf{g}) \\ \mathsf{H}_2\mathsf{CO}(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) &\longrightarrow \mathsf{CO}_2(\mathsf{g}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \\ \mathsf{H}_2(\mathsf{g}) + \mathsf{C}_2\mathsf{H}_4(\mathsf{g}) &\longrightarrow \mathsf{C}_2\mathsf{H}_6(\mathsf{g}) \\ 2\mathsf{CO}_2(\mathsf{g}) + \mathsf{N}_2(\mathsf{g}) &\longrightarrow 2\mathsf{CO}(\mathsf{g}) + 2\mathsf{NO}(\mathsf{g}) \\ \mathsf{CH}_4(\mathsf{g}) + \mathsf{H}_2\mathsf{O}(\mathsf{g}) &\longrightarrow 3\mathsf{H}_2(\mathsf{g}) + \mathsf{CO}(\mathsf{g}) \end{aligned}$

What types of reactions lead to increased entropy?

Effect of dissolution:

 $NaCl(s) \rightarrow NaCl(aq)$

S°(NaCl(s)) = 72.1 J/K S°(NaCl(aq)) = 115.5 J/K

 $NaOH(s) \rightarrow NaOH(aq)$

S°(NaOH(s)) = 64.5 J/K S°(NaOH(aq)) = 48.1 J/K Entropy vs. Enthalpy Control of Reactions

Entropy vs. Enthalpy Control of Reactions

Second law of thermodynamics: system and surroundings $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$

$$\Delta S_{universe} = \Delta S_{system} + \frac{-\Delta H_{system}}{T}$$

Calculate the entropy change for the universe for the reaction:

```
2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(I)
```

```
\Delta H^{\circ} = -752.2 kJ and \Delta S^{\circ} = -351.6 J/K
```

$$\Delta S_{universe} = \Delta S_{system} + \frac{-\Delta H_{system}}{T}$$

Calculate the entropy change for the universe for the reaction:

```
2 NO(g) + 2 H<sub>2</sub>(g) \rightarrow N<sub>2</sub>(g) + 2 H<sub>2</sub>O(l)

\DeltaH<sup>o</sup> = -752.2 kJ and \DeltaS<sup>o</sup> = -351.6 J/K

\DeltaS<sup>o</sup><sub>universe</sub> = +2171.3 J/K

The reaction is: ______ favored.

The reaction ______ favored by entropy.
```

The reaction ______ favored by enthalpy.

At this temperature, the reaction is controlled by ______.

Section 20.3 Free Energy

Bill Vining SUNY College at Oneonta <u>Putting ΔS , ΔH and Temperature Together</u>

Gibb's Free Energy: $\Delta G = \Delta H - T\Delta S$

When ΔG is *negative*, reaction is *favored*.

When ΔG is *positive*, reaction is *disfavored*.

 $2 \operatorname{Fe}_2 O_3(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(s) + 3 \operatorname{CO}_2(g)$

 $\Delta H = +468 \text{ kJ}$ $\Delta S = +561 \text{ J/K} \qquad \Delta G = \Delta H - T\Delta S$

What is ΔG at 25 °C and at 1000 °C?

Enthalpy vs. Entropy Control of Reactions

 $\Delta G = \Delta H - T \Delta S$

At high temperatures:

At low temperatures:

Temperature Domains and Reaction Favorability

 $2 \operatorname{Fe}_2 O_3(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(s) + 3 \operatorname{CO}_2(g)$

 $\Delta H = +468 \text{ kJ}$ $\Delta S = +561 \text{ J/K}$

In what temperature range will this reaction be favored?

High or low?

What temperature?

Free Energy vs. Temperature Curves

Catalytic Converters

Nitrogen oxides cause smog.

N₂(g) + O₂(g) → 2 NO(g) Δ H = +180 kJ Δ S = +25 J/K

Free Energy of Formation: Only used at 25 °C

$\Delta G^{o}_{f}(compound) = \Delta G^{o}$ for reaction to make 1 mol from elements in their natural states

Table 19.3.2	Selected Standard Free Energies	
of Formation	for Pure Substances at 25 °C	

Substance	∆ <i>Gf</i> ° (kJ/mol)	Substance	∆Gf° (kJ/mol)
C(diamond)	2.9	$\mathrm{Hg}(\ell)$	0
C(graphite)	0	HCl(g)	-95.3
CO(g)	-137.2	HCl(aq)	-131.2
$CO_2(g)$	-394.4	$\rm FeCl_2(s)$	-302.3
$\mathrm{CH}_3\mathrm{OH}(\ell)$	-166.3	Cu(s)	0
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}(\ell)$	-174.8	$H_2O(g)$	-228.6
$\mathrm{C}_6\mathrm{H}_6(\ell)$	124.5	${\rm H_2O}(\ell)$	-273.1
$H_2(g)$	0		

Free Energy of Formation: Only used at 25 °C

$$\Delta G^{o} = \sum \Delta G_{f}^{o}(products) - \sum \Delta G_{f}^{o}(reactants)$$

 $CH_3CH_2OH(\ell) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(\ell)$

Table 19.3.2	Selected Standard Free Energies
of Formation	for Pure Substances at 25 °C

Substance	Δ <i>G_f°</i> (kJ/mol)	Substance	∆G _f ° (kJ/mol)
C(diamond)	2.9	$\mathrm{Hg}(\ell)$	0
C(graphite)	0	HCl(g)	-95.3
CO(g)	-137.2	HCl(aq)	-131.2
$CO_2(g)$	-394.4	$\rm FeCl_2(s)$	-302.3
$\mathrm{CH}_3\mathrm{OH}(\ell)$	-166.3	Cu(s)	0
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}(\ell)$	-174.8	$H_2O(g)$	-228.6
$\mathrm{C}_6\mathrm{H}_6(\ell)$	124.5	$\mathrm{H}_2\mathrm{O}(\ell)$	-273.1
$H_2(g)$	0		