Section 20.3 Free Energy, the Reaction Quotient and the Equilibrium Constant

Recall Q, K and Reaction Favorability

$$a A + b B \rightleftharpoons c C + d D$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

The system is not at equilibrium. Reactants will be consumed, and product concentration will increase until Q = K. The reaction will proceed in the forward direction as written (reactants \rightarrow products).

Q = K The system is at equilibrium, and no further change in reactant or product concentration will occur.

The system is not at equilibrium. Products will be consumed, and reactant Q > K concentration will increase until Q = K. The reaction proceeds to the left as written (reactants \leftarrow products).

ΔG , ΔG° and Q

Q represents the current state of the system.

 ΔG determines if the reaction system in its current state is spontaneous in either direction.

 ΔG° determines if the system is product-favored or reactant-favored.

 $\Delta G < 0$ Reaction is spontaneous in the forward direction (reactants \rightarrow products).

 $\Delta G = 0$ Reaction is at equilibrium.

 $\Delta G > 0$ Reaction is spontaneous in the reverse direction (reactants \leftarrow products).

 ΔG° < 0 Reaction is product-favored.

 $\Delta G^{\circ} = 0$ Reaction is neither reactant- or product-favored..

 $\Delta G^{\circ} > 0$ Reaction is reactant-favored.

Connecting ΔG , ΔG° and Q

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

Use standard thermodynamic data (linked) to calculate ΔG at 298.15 K for the following reaction, assuming that all gases have a pressure of 16.91 mm Hg.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

	$\Delta G_f^{ o} (kJ/mol)$
NO(g)	86.6
$O_2(g)$	0
$NO_2(g)$	51.3

Connecting ΔG , ΔG° and Q

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

Use standard thermodynamic data (linked) to calculate ΔG at 298.15 K for the following reaction, assuming that all gases have a pressure of 16.91 mm Hg.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

	$\Delta G_f^{ o} (kJ/mol)$
NO(g)	86.6
$O_2(g)$	0
$NO_2(g)$	51.3

ΔG , ΔG° and the Equilibrium Constant, K

At equilibrion,
$$\Delta G = 0$$
 so $0 = \Delta G^{\circ} + RT \ln Q$

$$0 = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln Q$$

$$\Delta G^{o} = -RT \ln Q$$
 and $\ln K = -\frac{\Delta G^{o}}{RT}$ $K = e^{-\frac{\Delta G^{o}}{RT}}$

$$K = e^{-\frac{\Delta G^{o}}{RT}}$$

Use standard thermodynamic data to calculate K at 298.15 K for the following reaction.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

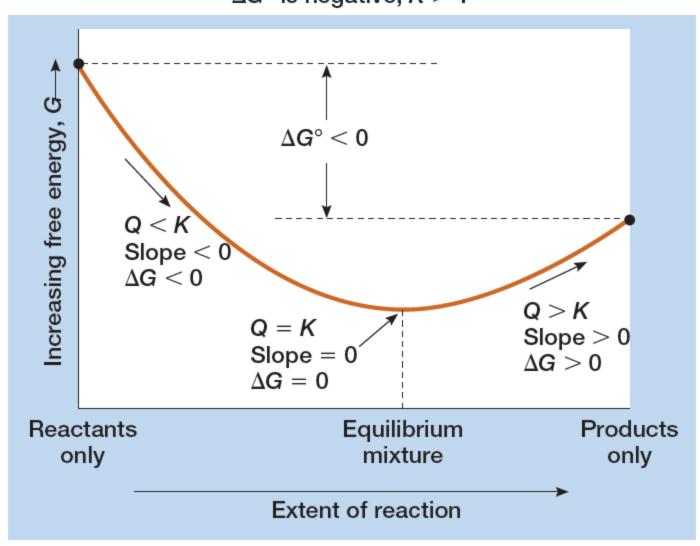
$$\Delta G_f^{\circ}$$
 (kJ/mol)
NO(g) 86.6
 $O_2(g)$ 0

$$\Delta G^{\circ} = -70.6 \text{ kJ}$$

ΔG , ΔG° and the Equilibrium Constant, K

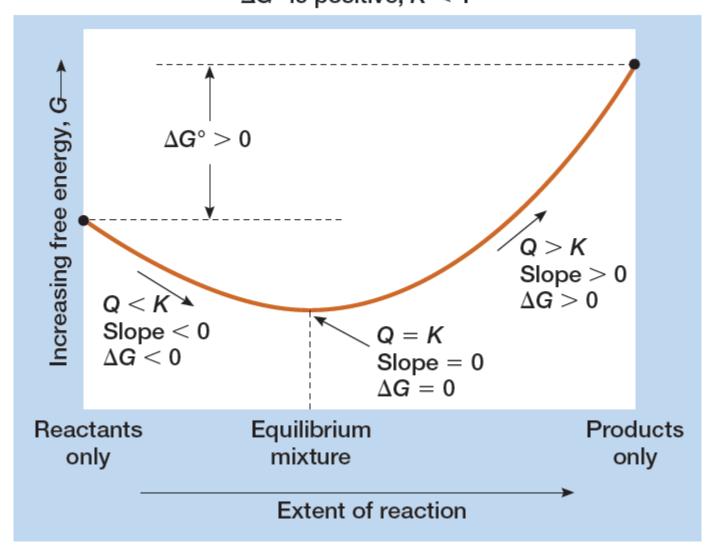
A student determines the value of the equilibrium constant to be **1.11E6** for the following reaction.

$$3Fe_2O_3(s) + H_2(g)2Fe_3O_4(s) + H_2O(g)$$


$$\ln K = -\frac{\Delta G^{o}}{RT} \qquad K = e^{-\frac{\Delta G^{o}}{RT}}$$

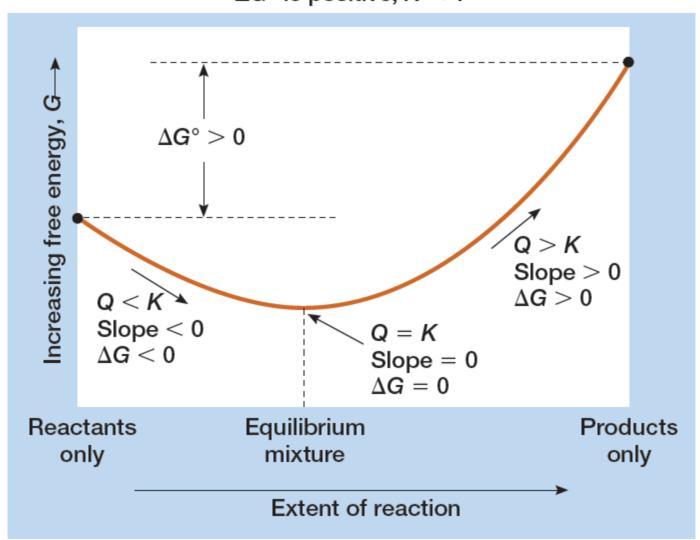
Based on this value of K_{eq} : ΔG° for this reaction is expected to be (greater, less) than zero.

Calculate ΔG° and the free energy change for the reaction of **1.67** moles of $Fe_2O_3(s)$ at standard conditions at 298K.


ΔG , ΔG° , Q, and K

Reaction is product-favored at equilibrium ΔG° is negative, K > 1

ΔG , ΔG° , Q, and K


Reaction is reactant-favored at equilibrium ΔG° is positive, K < 1

ΔG , ΔG° , Q, and K

Reaction is reactant-favored at equilibrium ΔG° is positive, K < 1

Can a chemical system have a positive value of ΔG^o and yet still be favored to react in the forward direction?

