INSTRUCTIONS —

This examination has two parts. Part I is in multiple choice format and the answers should be placed on the "Test Scoring Answer Sheet" which must be turned in and will be machine graded.

Part II requires your responding to questions by writing answers into the spaces provided in this booklet. This entire Exam Booklet must be handed in and will be returned to you with a grade. Write your name in the space above NOW.

On the Test Scoring Answer Sheet, using a soft pencil, enter the following data (in the appropriate places): your name, instructor's name, your OSC student (or Social Security) number, course number (30032201) and the test number (03); darken the appropriate bubbles under the entries, making dark black marks which fill the bubbles (if you use your OSC number do not darken a bubble under the A at the beginning of the number).

You may use a set of molecular models but no other aids during the exam.

Answer all questions. The questions on Part I are worth 2 points each.

You have 90 minutes. Good luck!
1. The structure for N-methylacetamide is

(a) \(H_3C\overset{\text{O}}{\rightleftharpoons}CH_2NH_2 \)

(b) \(H_3C\overset{\text{O}}{\rightleftharpoons}NHCH_3 \)

(c) \(H_3CNH\overset{\text{O}}{\rightleftharpoons}NHCH_3 \)

(d) \(H_3C\overset{\text{O}}{\rightleftharpoons}CH_2NHCH_3 \)

2. Ph-CO-OCH\(_2\)CH\(_3\) is

(a) phenyl ethanoate, (b) phenyl acetate, (c) phenoyl ethylate,
(d) ethyl benzoate, (e) ethyl phenoate

3. CH\(_3\)CH\(_2\)O-CO-CH\(_2\)-CO-OCH\(_2\)CH\(_3\) is

(a) acetoacetic ester, (b) malonic ester, (c) Ester’s ester
(d) acetoacetic anhydride, (e) malonic anhydride

4. CH\(_3\)-CO-O-CO-CH\(_3\) is

(a) acetic acetate, (b) ethyl acetate, (c) acetic anhydride, (d) formic anhydride,
(e) ethyl formate

5. Rank the following compounds in order from most reactive to least reactive toward nucleophilic acyl substitution:

I: (CH\(_3\))\(_2\)CH-CO-Cl, II: (CH\(_3\))\(_2\)CH-CO-OCH\(_3\), III: (CH\(_3\))\(_2\)CH-CO-NH\(_2\), IV: CH\(_3\)-CO-NH\(_2\)

(a) I > II > III > IV, (b) IV > III > II > I, (c) II > IV > I > III, (d) IV > III > I > II,
(e) I > II > IV > III

6. The behavior of esters and ketones in a reaction with a nucleophile is different because

(a) the carbonyl carbon of the ketone is more positive.
(b) the two oxygens of the ester sterically hinder nucleophilic attack.
(c) the ester cannot form a tetrahedral intermediate.
(d) there is a reasonable leaving group in the ester.
(e) the ketone is not easily oxidized.
The following three questions consist of a statement followed by the connecting word because followed by a reason. For each question choose the correct description of the statement and reason from the list below --

(a) The statement and the reason are both factually true, and the reason is the correct explanation of the statement.
(b) The statement and the reason are both factually true, but the reason is not the correct explanation of the statement.
(c) The statement is true and the reason is false.
(d) The statement is false and the reason is true.
(e) Both statement and reason are false.

8. Under basic conditions (H₂O/NaOH) compound I on the right will hydrolyze more quickly than II because the transition state of the rate limiting step is more crowded for I than for II.
9. Branched alkylbenzenesulfonates, *e.g.* the compound to the right, are widely employed as detergents because they are inexpensive to make.

10. A Dean-Stark apparatus is sometimes used in Fisher esterification syntheses because equilibrium constants in these reactions are typically about 1 and the Dean-Stark tube removes water thereby driving the reaction in the forward direction.

11. Which of the following procedures give(s) benzyl alcohol, Ph-CH₂OH, starting with methyl benzoate, Ph-CO-OCH₃?

(a) 1. DIBAH (diisobutylaluminum hydride) in toluene, -78°C; 2. H₃O⁺,
(b) H₂, Pd/BaSO₄, (c) 1. LiAlH₄, ether; 2. H₃O⁺,
(d) a & b, (e) a & c

12. \[
\text{CH}_3\text{CH}_2\text{CH}_2\text{C}≡\text{N} + \text{H}_2\text{O} \xrightarrow{\text{H}_2\text{SO}_4, \text{heat}} \text{major organic product}
\]

(a) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-NH}_2 \), (b) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{N≡N-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)
(c) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CO-}_\text{NH}_2 \), (d) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-NO}_2 \), (e) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH} \)

13. \[
\text{(CH}_3\text{)}_3\text{CBr} + \text{Na}^+\text{CN}^− \xrightarrow{} \text{major product}
\]

(a) \(\text{(CH}_3\text{)}_3\text{CCN} \), (b) \(\text{(CH}_3\text{)}_2\text{C}=\text{CHCN} \), (c) \(\text{(CH}_3\text{)}_2\text{C}=\text{CH}_2 \), (d) \(\text{(CH}_3\text{)}_3\text{CCOOH} \)
(e) none of the above

14. Rank the protons in 3,5-heptanedione in order of decreasing acidity (most acidic first).

(a) I > II > III, (b) III > II > I,
(c) II > III > I, (d) II > I > III
15. Select the major product of the following reaction.

\[
\text{COOH} \xrightarrow{1. \text{BH}_3, \text{THF}} \text{CH}_2\text{OH} \frac{2. \text{H}_3\text{O}^+}{\text{OH}} \]

(a) \(\text{COOH}\) (b) \(\text{OH}\) (c) \(\text{CH}_2\text{OH}\) (d) \(\text{CH}_2\text{OH}\) (e) \(\text{CH}_2\text{OH}\)

16. The structures shown to the right are

(a) tautomers, (b) resonance structures, (c) enantiomers, (d) diastereomers, (e) none of the above.

17. The structures shown to the right are

(a) tautomers, (b) resonance structures, (c) enantiomers, (d) diastereomers, (e) none of the above.

For questions 18 and 19 consider the mechanism for the acid-catalyzed bromination of acetone shown to the right. [Note: not all resonance structures are shown.]

\[
\begin{align*}
\text{CH}_3\text{CCH}_3 + \text{H}_2\text{O}^+ & \rightarrow \text{CH}_3\text{CCH}_3 + \text{H}_3\text{O}^+ \\
\text{CH}_3\text{CCH}_3 + \text{H}_2\text{O} & \rightarrow \text{CH}_3\text{C}=\text{CH}_2 + \text{H}_2\text{O}^+ \\
\text{CH}_3\text{C}=\text{CH}_2 + \text{Br}_2 & \rightarrow \text{CH}_3\text{CCH}_2\text{Br} + \text{Br}^+ \\
\text{CH}_3\text{CCH}_2\text{Br} + \text{H}_2\text{O} & \rightarrow \text{CH}_3\text{CCH}_2\text{Br} + \text{H}_3\text{O}^+
\end{align*}
\]
18. Which of the steps shown is incorrect?

(a), (b), (c), (d), (e) All of the steps are essentially correct.

19. Which of the steps is the slow step in the mechanism?

(a), (b), (c), (d), (e) There is no slow step.

20. Which of the following compounds will react with iodine in aqueous sodium hydroxide solution to give a precipitate of iodoform, CHI₃?

(a) PhCHO, (b) PhCOCH₃, (c) CH₃CH₂CHOHCH₂CH₃, (d) CH₃CH₂CHO

21. One of the principal products of the following reaction would be:

22. Some nucleophiles are said to be *ambident*. Which of the following nucleophiles are in this category?

(a) I&II, (b) II&III, (c) I, II&III, (d) IV, (e) I&III, (f) II&IV
23. Select the compound that would be formed in greatest amount.

24.
25. Select the product that would be formed in greatest amount.

\[
\begin{array}{c}
\text{CH}_3\text{CCH}_2\text{COC}_2\text{H}_5 \\
\xrightarrow{1. \text{Br}_2, \text{PBr}_3} \\
\xrightarrow{2. \text{H}_2\text{O}}
\end{array}
\]

(a) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{Br}\)
(b) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{Br}\)
(c) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{COC}_2\text{H}_5\)

(d) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{COC}_2\text{H}_5\)

26.

\[
\begin{align*}
\text{CH}_3\text{CCH}_2\text{CO}_2\text{H}_5 & \xrightarrow{\text{NaOC}_2\text{H}_5} \xrightarrow{\text{C}_2\text{H}_5\text{OH}} \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{H}_2\text{O}^+ \text{heat}}
\end{align*}
\]

(a) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3\)

(b) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{COC}_2\text{H}_5\)

(c) \(\text{CH}_3\text{CCH}_3\)

(d) \(\text{CH}_3\text{CCH}_2\text{CH}_2\text{COC}_2\text{H}_5\)

27. The reaction shown to the right is an example of a(n)

(a) Claisen condensation.
(b) aldol reaction.
(c) demerol reaction.
(d) Knovenagel reaction.
(e) Diels-Alder reaction.

28. The reaction shown to the right does not give as good a yield as the similar reaction shown in question #27. A reasonable explanation for this would be that

(a) the aldehydic proton is more acidic than the methyl protons.
(b) the product formed from acetone undergoes a subsequent reaction, thus reducing the yield.
(c) a steric factor is involved as a result of the intermediate (and product) being more crowded in these reactions and the ketone case is worse than the aldehyde in this respect.
(d) the ketone has 6 acidic hydrogens while the aldehyde has only 3.
(e) Trick question, dude! Like, this reaction gives a better yield than the one in question #27.

29. Which of the following describe common situations encountered with aldol reactions?

(a) Product reverts to reactant. (b) Product undergoes a spontaneous dehydration, producing a conjugated enone. (c) Product undergoes a spontaneous dehydration, producing a non-conjugated enone. (d) Product undergoes reduction, producing a diol.
(e) a & b, (f) a & c, (g) b & c, (h) a, b & c.

30. Which of the following pairs of compounds would be the most reasonable choice for an attempt at a "mixed" or "crossed" aldol condensation?

(a) CH₃CH + CH₃CCH₃ (b) PhCH + CH₃CCH₃ (c) PhCH + HCH

(d) CH₃CCH₃ + CH₃CCH₂CH₃ (e) CH₃CH + CH₃CCH₂CH₃

31. To prepare acetoacetic ester (ethyl acetoacetate), which of the following compounds could you use in a Claisen condensation?

(a) CH₃COC₂H₅ (b) CH₃CCH₂OC₂H₅ (c) HCCH₂COC₂H₅

(d) CH₃CCH₂CCH₃ (e) none of these answers is correct

32. Which of the following compounds would not give a good yield in a Claisen condensation?

(a) CH₂CH₂-COC₂H₅ (b) CH₃CH₂-COC₂H₅ (c) (CH₃)₂CH-COC₂H₅

(d) CH₂CH₂-COC₂H₅ (e) CH₃CH₂-COCH₃
33. Select the product that is formed in the following Michael addition.

\[
\begin{align*}
\text{CH}_2(\text{CO}_2\text{C}_2\text{H}_5)_2 & \quad + \quad \text{H}_2\text{C}=\text{CHCOCH}_3 \\
& \quad \text{base} \quad \rightarrow \\
\text{(a) H}_2\text{C}=\text{C}=\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 & \quad \text{(b) H}_3\text{C}–\text{CH}_2\text{C}=\text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \\
& \quad \text{CH}_3 & \quad \text{OH} \\
\text{(c) H}_2\text{C}=\text{CH}_2\text{C}=\text{CH}_3 & \quad \text{(d) H}_3\text{C}–\text{CHC}=\text{CH}_3 & \quad \text{(e) none of these} \\
& \quad \text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 & \quad \text{CH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \quad \text{products is formed}
\end{align*}
\]

34. A frequent aim of synthesis is to make larger molecules from smaller ones. Which of the following syntheses does \textit{not} accomplish this?

(a) aldol reaction, (b) Claisen condensation, (c) Grignard synthesis, (d) Diels-Alder reaction, (e) saponification reaction.

35. Which of the following bases would not convert acetone, essentially completely, to its enolate anion?

(a) butyllithium, (b) sodium hydride, (c) lithium diisopropylamide, (d) sodium hydroxide

Do Not Detach The Following Sheets From The Rest Of The Exam

Part II. Enter your answers in the space provided. If there is inadequate room, continue on the back of the page and clearly indicate on the front of the page that you have done this.
Hand in this entire exam booklet when you are finished; it will be returned to you with your grade. Make sure your name is on the front sheet.
1. Synthesis. Outline the following syntheses. Show all reagents and any important conditions. Do not show mechanisms or balance equations.

(a) Make methyl benzoate, Ph-CO-OCH₃, starting from benzoic acid. In addition to benzoic acid, you may use any materials you wish.

(d) Outline a synthesis of 4-pentenoic acid, CH₂=CHCH₂CH₂COOH, starting from malonic ester (diethyl malonate), CH₃CH₂O-CO-CH₂-CO-OCH₂CH₃. In addition to malonic ester you may use any materials you wish.

2. Mechanism.
(a) Show all steps in the mechanism of the following enolate methylation reaction sequence leading to the major product (2,6-dimethylcyclohexanone). Be sure to show relevant resonance structures of intermediates.

\[
\begin{align*}
\text{H-C} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\end{align*}
\]

1) Li⁺ \quad \text{N⁻} \quad \rightarrow \\

\[
\begin{align*}
\text{H-C} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\end{align*}
\]

2) CH₃I

\[
\begin{align*}
\text{H-C} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{CH₃} \\
\end{align*}
\]

56% 6%
(b) Based on the mechanisms for the formation of the major (56%) and minor (6%) products above (which are the same except for the hydrogen replaced), explain why the amount of 2,6-dimethylcyclohexanone produced is about 10 times greater than that of 2,2-dimethylcyclohexanone.

3. Roadmap.
One mole of acetaldehyde reacts with 3 moles of Compound A. This constitutes a sequence of three crossed aldol reactions that produce one mole of compound B. Concentrated aqueous sodium hydroxide and one mole of Compound A are added to Compound B and the mixture is heated, giving Compound C and sodium formate. A mole of compound C reacts with 4 moles of nitric acid to produce a nitrate tetraester, pentaerythritol tetranitrate, which is used in medicine as a vasodilator and to make Primacord fuse. Compounds A and B each give a positive Tollen’s test; C does not. Draw the structures of A, B, and C.

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH} + 3 \\
\text{H}_2\text{C} & \quad \text{CH} + \text{H}_3\text{C} - \text{CH} \quad \text{NaOH} \\
\text{H}_2\text{O} & \quad \text{H}_3\text{C} - \text{CH} \\
\text{NaOH} & \quad \text{H}_2\text{O} \\
\text{conc. NaOH} & \quad \text{H}_2\text{O} \\
\text{pentaerythritol tetranitrate} & \quad \text{HONO}_2 \\
+ 4 \text{H}_2\text{O} & \quad + \text{sodium formate}
\end{align*}
\]